The purpose of this study was to propose a methodology which quantifies the ball-speed generating mechanism of baseball pitching with the use of inertial measurement units (IMUs). IMUs were attached to the upper trunk, upper arm, forearm, and hand segments. The initial orientation parameters of each segment were identified using the differential iteration method from the acceleration and angular velocity of the sensor coordinate system output by IMUs attached to each segment. The motion of each segment was calculated and the dynamic contributions were then calculated. The motion of a baseball pitcher, who was instructed to throw at the target, was measured with a motion capture (mocap) system and IMUs. The results show that quantitative analysis of the ball-speed generation mechanism by the proposed method is almost similar to that conducted by the mocap system. In the future, this method will be employed to evaluate the ball-speed generation mechanism outside controlled laboratory conditions in an effort to help understand and improve the player’s motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.