The relative biodegradability of long chain linear alkylamines has been studied under aerobic condition using the oxygen consumption technique and other methods. Primary and secondary alkylamines with C4–C18 were found to be readily biodegradable. Of the tertiary alkylamines, monoalkyldimethylamines were biodegradable whereas trialkylamines were less biodegradable. Alkylamine‐assimilating bacteria were isolated from activated sludge by enrichment culture technique. A strain isolated as PA12 (primary alkylamine)‐degrading bacterium was identified asPseudomonas putida. Biodegradability of various alkylamines by this isolated strain also is discussed.
In living organisms, modified fatty acids are crucial for the functions of the cellular membranes and storage lipids where the fatty acids are esterified. Some bacteria produce a typical methyl-branched fatty acid, i.e., 10-methyl stearic acid (19:0Me10). The biosynthetic pathway of 19:0Me10 in vivo has not been demonstrated clearly yet. It had been speculated that 19:0Me10 is synthesized from oleic acid (18:1Δ9) by S-adenosyl-L-methionine-dependent methyltransfer and NADPH-dependent reduction via a methylenated intermediate, 10-methyelene octadecanoic acid. Although the recombinant methyltransferases UmaA and UfaA1 from Mycobacterium tuberculosis H37Rv synthesize 19:0Me10 from 18:1Δ9 and NADPH in vitro, these methyltransferases do not possess any domains functioning in the redox reaction. These findings may contradict the two-step biosynthetic pathway. We focused on novel S-adenosyl-L-methionine-dependent methyltransferases from Mycobacterium chlorophenolicum that are involved in 19:0Me10 synthesis and selected two candidate proteins, WP_048471942 and WP_048472121, by a comparative genomic analysis. However, the heterologous expression of these candidate genes in Escherichia coli cells did not produce 19:0Me10. We found that one of the candidate genes, WP_048472121, was collocated with another gene, WP_048472120, that encodes a protein containing a domain associated with flavin adenine dinucleotide-binding oxidoreductase activity. The co-expression of these proteins (hereafter called BfaA and BfaB, respectively) led to the biosynthesis of 19:0Me10 in E. coli cells via the methylenated intermediate.
Microalgae have received much attention as a next-generation source of biomass energy. However, most of the fatty acids (FAs) from microalgae are multiply unsaturated; thus, the biofuels derived from them are fluid, but vulnerable to oxidation. In this study, we attempted to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by expressing the cfa gene for cyclopropane FA synthase from Escherichia coli with the aim of producing FAs that are fluid and stable in response to oxidization. We successfully synthesized cyclopropane FAs in Synechocystis with a yield of ~30% of total FAs. Growth of the transformants was altered, particularly at low temperatures, but photosynthesis and respiration were not significantly affected. C16:1(∆9) synthesis in the desA(-)/desD(-) strain by expression of the desC2 gene for sn-2 specific ∆9 desaturase positively affected growth at low temperatures via promotion of various cellular processes, with the exceptions of photosynthesis and respiration. Estimation of the apparent activities of desaturases suggested that some acyl-lipid desaturases might recognize the lipid side chain.
Recently, microalgae have attracted attention as sources of biomass energy. However, fatty acids from the microalgae are mainly unsaturated and show low stability in oxygenated environments, due to oxidation of the double bonds. The branched-chain fatty acid, 10-methyl stearic acid, is synthesized from oleic acid in certain bacteria; the fatty acid is saturated, but melting point is low. Thus, it is stable in the presence of oxygen and is highly fluid. We previously demonstrated that BfaA and BfaB in Mycobacterium chlorophenolicum are involved in the synthesis of 10-methyl stearic acid from oleic acid. In this study, as a consequence of the introduction of bfaA and bfaB into the cyanobacterium, Synechocystis sp. PCC 6803, we succeeded in producing 10-methyl stearic acid, with yields up to 4.1% of the total fatty acid content. The synthesis of 10-methyl stearic acid in Synechocystis cells did not show a significant effect on photosynthetic activity, but the growth of the cells was retarded at 34 °C. We observed that the synthesis of 10-methylene stearic acid, a precursor of 10-methyl stearic acid, had an inhibitory effect on the growth of the transformants, which was mitigated under microoxic conditions. Eventually, the amount of 10-methyl stearic acid present in the sulfoquinovosyl diacylglycerol and phosphatidylglycerol of the transformants was remarkably higher than that in the monogalactosyldiacylglycerol and digalactosyldiacylglycerol. Overall, we successfully synthesized 10-methyl stearic acid in the phototroph, Synechocystis, demonstrating that it is possible to synthesize unique modified fatty acids via photosynthesis that are not naturally produced in photosynthetic organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.