The study of carrier multiplication has become an essential part of many-body physics and materials science as this multiplication directly affects nonlinear transport phenomena, and has a key role in designing efficient solar cells and electroluminescent emitters and highly sensitive photon detectors. Here we show that a 1-MVcm−1 electric field of a terahertz pulse, unlike a DC bias, can generate a substantial number of electron–hole pairs, forming excitons that emit near-infrared luminescence. The bright luminescence associated with carrier multiplication suggests that carriers coherently driven by a strong electric field can efficiently gain enough kinetic energy to induce a series of impact ionizations that can increase the number of carriers by about three orders of magnitude on the picosecond time scale.
We investigated ultrafast carrier dynamics in graphene with near-infrared transient absorption measurement after intense half-cycle terahertz pulse excitation. The terahertz electric field efficiently drives the carriers, inducing large transparency in the near-infrared region. Theoretical calculations using the Boltzmann transport equation quantitatively reproduce the experimental findings. This good agreement suggests that the intense terahertz field should promote a remarkable impact ionization process and increase the carrier density.
It is widely acknowledged that the development of traditional terrestrial communication technologies cannot provide all users with fair and high quality services due to the scarce network resource and limited coverage areas. To complement the terrestrial connection, especially for users in rural, disasterstricken, or other difficult-to-serve areas, satellites, unmanned aerial vehicles (UAVs), and balloons have been utilized to relay the communication signals. On the basis, Space-Air-Ground Integrated Networks (SAGINs) have been proposed to improve the users' Quality of Experience (QoE). However, compared with existing networks such as ad hoc networks and cellular networks, the SAGINs are much more complex due to the various characteristics of three network segments. To improve the performance of SAGINs, researchers are facing many unprecedented challenges. In this paper, we propose the Artificial Intelligence (AI) technique to optimize the SAGINs, as the AI technique has shown its predominant advantages in many applications. We first analyze several main challenges of SAGINs and explain how these problems can be solved by AI. Then, we consider the satellite traffic balance as an example and propose a deep learning based method to improve the traffic control performance. Simulation results evaluate that the deep learning technique can be an efficient tool to improve the performance of SAGINs.
The emergence of the vortex beam with orbital angular momentum (OAM) has provided intriguing possibilities to induce optical transitions beyond the framework of the electric dipole interaction. The uniqueness stems from the OAM transfer from light to material, as demonstrated in electronic transitions in atomic systems. In this study, we report on the OAM transfer to electrons in solid-state systems, which has been elusive to date. Using metamaterials (periodically textured metallic disks), we show that multipolar modes of the surface electromagnetic excitations (so-called spoof localized surface plasmons) are selectively induced by the terahertz vortex beam. Our results reveal selection rules governed by the conservation of the total angular momentum, which is confirmed by numerical simulations. The efficient transfer of light’s OAM to elementary excitations in solid-state systems at room temperature opens up new possibilities of OAM manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.