In this paper, we present a novel technique to use Reed-Muller (RM) codes for the wireless half-duplex coded-cooperative network. Plotkin's construction allows RM codes to be used in a coded-cooperative scheme. To improve the cooperation provided by the relay in a coded-cooperative scheme, a design criterion and an efficient algorithm to achieve the design objective are also suggested. Moreover, union bounds for average error probability are determined, for both the cooperative and the non-cooperative schemes based on RM codes in the Rayleigh fading channel. To generalize the proposed RM coded-cooperative scheme, we examined different RM codes at the source and at the relay. At the destination, soft decision maximum likelihood decoding (SD-MLD) and majority logic decoding are used. Theoretical analysis and Monte-Carlo simulations show that the proposed RM coded-cooperative scheme clearly outperforms the RM non-cooperative scheme.
In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.
In this article, a new kind of pragmatic simple-encoding irregular systematic lowdensity parity-check (LDPC) code for multi-relay coded cooperation is designed, where the introduced joint iterative decoding is performed in the destination based on a proposed joint Tanner graph for all the constituent LDPC codes used by the source and relays in multi-relay cooperation. The theoretical analysis and numerical results show that the coded cooperations outperform the coded noncooperation under the same code rate, and also achieve a good trade-off between the performance and the decoding complexity associated with the number of relays. This performance gain can be credited to the additional exchange of extrinsic information from the LDPC codes used by the source and the relays in both ideal and non-ideal cooperations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.