Microsatellite distribution was more abundant in 5'-flanking regions of genes compared with that expected in the whole genome, with an over-representation of AG and AAG repeats; there were clear differences from distributions in 3'-flanks and coding fractions, where triplet frequencies evidently corresponded to codon usage. We identified 1140 full-length genes that contained at least one locus of AG or AAG repeats in their upstream sequences, and whose functional characteristics were significantly associated with the repeats. This observation indicates that selective pressure markedly differed in the three transcribed regions, with positive selection of AG and AAG repeats in 5'-flanks close to those genes whose products are preferentially involved in transcription.
A novel gene, OsAHL1, containing an AT-hook motif and a PPC domain was identified through genome-wide profiling and analysis of mRNAs by comparing the microarray of drought-challenged versus normally watered rice. The results indicated OsAHL1 has both drought avoidance and drought tolerance that could greatly improve drought resistance of the rice plant. Overexpression of OsAHL1 enhanced multiple stress tolerances in rice plants during both seedling and panicle development stages. Functional studies revealed that OsAHL1 regulates root development under drought condition to enhance drought avoidance, participates in oxidative stress response and also regulates the content of chlorophyll in rice leaves. OsAHL1 specifically binds to the A/T rich sequence region of promoters or introns, and hence directly regulates the expression of many stress related downstream genes.
Understanding the molecular mechanisms that underlie plant responses to drought stress is challenging due to the complex interplay of numerous different genes. Here, we used network-based gene clustering to uncover the relationships between drought-responsive genes from large microarray datasets. We identified 2,607 rice genes that showed significant changes in gene expression under drought stress; 1,392 genes were highly intercorrelated to form 15 gene modules. These drought-responsive gene modules are biologically plausible, with enrichments for genes in common functional categories, stress response changes, tissue-specific expression and transcription factor binding sites. We observed that a gene module (referred to as module 4) consisting of 134 genes was significantly associated with drought response in both drought-tolerant and drought-sensitive rice varieties. This module is enriched for genes involved in controlling the response of the plant to water and embryonic development, including a heat shock transcription factor as the key regulator in the expression of ABRE-containing genes. These results suggest that module 4 is highly conserved in the ABA-mediated drought response pathway in different rice varieties. Moreover, our study showed that many hub genes clustered in rice chromosomes had significant associations with QTLs for drought stress tolerance. The relationship between hub gene clusters and drought tolerance QTLs may provide a key to understand the genetic basis of drought tolerance in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.