Knowing the amounts of energy and nutrients in an individual’s diet is important for maintaining health and preventing chronic diseases. As electronic and AI technologies advance rapidly, dietary assessment can now be performed using food images obtained from a smartphone or a wearable device. One of the challenges in this approach is to computationally measure the volume of food in a bowl from an image. This problem has not been studied systematically despite the bowl being the most utilized food container in many parts of the world, especially in Asia and Africa. In this paper, we present a new method to measure the size and shape of a bowl by adhering a paper ruler centrally across the bottom and sides of the bowl and then taking an image. When observed from the image, the distortions in the width of the paper ruler and the spacings between ruler markers completely encode the size and shape of the bowl. A computational algorithm is developed to reconstruct the three-dimensional bowl interior using the observed distortions. Our experiments using nine bowls, colored liquids, and amorphous foods demonstrate high accuracy of our method for food volume estimation involving round bowls as containers. A total of 228 images of amorphous foods were also used in a comparative experiment between our algorithm and an independent human estimator. The results showed that our algorithm overperformed the human estimator who utilized different types of reference information and two estimation methods, including direct volume estimation and indirect estimation through the fullness of the bowl.
Background: It is well-known that many chronic diseases are associated with unhealthy diet. Although improving diet is critical, adopting a healthy diet is difficult despite its benefits being well understood. Technology is needed that allows assessment of dietary intake accurately and easily in real-world settings so that effective intervention to manage overweight, obesity and related chronic diseases can be developed. In recent years, new wearable imaging and computational technologies have emerged. These technologies are capable of objective and passive dietary assessment with much simplified procedure than traditional questionnaires. However, a critical task is required to estimate the portion size (in this case, the food volume) from a digital image. Currently, this task is very challenging because the volumetric information in the two-dimensional images is incomplete, and the estimation involves a great deal of imagination, beyond the capacity of the traditional image processing algorithms.Method : A novel Artificial Intelligent (AI) system is proposed to mimic the thinking of dietitians who use a set of common objects as gauges (e.g., a teaspoon, a golf ball, a cup, and so on) to estimate the portion size. Specifically, our human-mimetic system "mentally" gauges the volume of food using a set of internal reference volumes that have been learned previously. At the output, our system produces a vector of probabilities of the food with respect to the internal reference volumes. The estimation is then completed by an "intelligent guess", implemented by an inner product between the probability vector and the reference volume vector.Dataset: The datasets utilized for model validation include: 1) two virtual food datasets produced by computer simulation, and 2) two real-world food datasets collected by us.Results: The average relative volumetric errors of our AI method were less than 9% on both virtual datasets, and 11.7% and 20.1% , respectively, on the two real-world food datasets.Discussion: We discuss: 1) the use of AI to estimate the "relative volume" of food in a plate, 2) the case of multiple foods in a plate, and 3) the potential of AI in advancing nutrition science.Conclusion: Our AI system is able to use the same food volume estimation strategy as the human uses.
It is well known that many chronic diseases are associated with unhealthy diet. Although improving diet is critical, adopting a healthy diet is difficult despite its benefits being well understood. Technology is needed to allow an assessment of dietary intake accurately and easily in real-world settings so that effective intervention to manage being overweight, obesity, and related chronic diseases can be developed. In recent years, new wearable imaging and computational technologies have emerged. These technologies are capable of performing objective and passive dietary assessments with a much simplified procedure than traditional questionnaires. However, a critical task is required to estimate the portion size (in this case, the food volume) from a digital image. Currently, this task is very challenging because the volumetric information in the two-dimensional images is incomplete, and the estimation involves a great deal of imagination, beyond the capacity of the traditional image processing algorithms. In this work, we present a novel Artificial Intelligent (AI) system to mimic the thinking of dietitians who use a set of common objects as gauges (e.g., a teaspoon, a golf ball, a cup, and so on) to estimate the portion size. Specifically, our human-mimetic system “mentally” gauges the volume of food using a set of internal reference volumes that have been learned previously. At the output, our system produces a vector of probabilities of the food with respect to the internal reference volumes. The estimation is then completed by an “intelligent guess”, implemented by an inner product between the probability vector and the reference volume vector. Our experiments using both virtual and real food datasets have shown accurate volume estimation results.
Despite the extreme importance of food intake in human health, it is currently difficult to conduct an objective dietary assessment without individuals' self-report. In recent years, a passive method utilizing a wearable electronic device has emerged. This device acquires food images automatically during the eating process. These images are then analyzed to estimate intakes of calories and nutrients, assisted by advanced computational algorithms. Although this passive method is highly desirable, it has been thwarted by the requirement of a fiducial marker which must be present in the image for a scale reference. The importance of this scale reference is analogous to the importance of the scale bar in a map which determines distances or areas in any geological region covered by the map. Likewise, the sizes or volumes of arbitrary foods on a dining table covered by an image cannot be determined without the scale reference. Currently, the fiducial marker (often a checkerboard card) serves as the scale reference which must be present on the table before taking pictures, requiring human efforts to carry, place and retrieve the fiducial marker manually. In this work, we demonstrate that the fiducial marker can be eliminated if an individual's dining location is fixed and a one-time calibration using a circular plate of known size is performed. When the individual uses another circular plate of an unknown size, our algorithm estimates its radius using the range of pre-calibrated distances between the camera and the plate from which the desired scale reference is determined automatically. Our comparative experiment indicates that the mean absolute percentage error of the proposed estimation method is ~10.73%. Although this error is larger than that of the manual method of 6.68% using a fiducial marker on the table, the new method has a distinctive advantage of eliminating the manual procedure and automatically generating the scale reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.