Purpose Nucleolin (NCL) is a multifunctional protein with oncogenic properties. NCL expression levels have been linked to the outcomes of various malignancies, but the clinical value of NCL in patients with endometrial carcinoma (EC) remains unclear. Here, the expression of NCL in EC tissues and its associations with patient outcomes were assessed. Patients and Methods Data on NCL mRNA expression in EC and adjacent nonneoplastic tissues from The Cancer Genome Atlas (TCGA) were analyzed. In addition, NCL protein expression in 82 endometroid endometrial adenocarcinoma tissues and 15 non-malignant tissues was detected by immunohistochemistry. Results Elevated NCL expression was markedly correlated with serous endometrial carcinoma (P<0.001), advanced stage (P=0.029), and grade 3 (P<0.001). High NCL levels were associated with poorer overall survival (OS) and disease-free survival (DFS) compared with intermediate or low NCL levels (OS: P=0.001, DFS: P=0.006). The multivariate Cox proportional hazards model showed that NCL expression was an independent poor prognostic factor for DFS (HR=1.282, CI=1.027–1.601, P=0.028). A similar correlation between high expression levels of NCL and unfavorable DFS was found in endometrioid endometrial adenocarcinoma (HR=1.411, CI=1.083–1.840, P=0.011). Positive extra-nuclear NCL expression (HR=3.377, 95% CI=1.029–11.186, P=0.046) and low nuclear NCL expression (HR=0.233, 95% CI=0.068–0.796, P=0.020) were independent prognostic factors for DFS in endometrioid endometrial adenocarcinoma. Conclusion Heterotopic NCL is a potential prognostic biomarker for EC. Inhibiting the distribution of NCL from the nucleus to the cytoplasm and membrane may be a promising therapeutic strategy to improve outcomes in patients with EC with high NCL expression.
Background Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. Efficacy of the bromodomain 4 (BRD4) inhibitor JQ1 has been reported for the treatment of various human cancers, but its potential impact on EC remains unclear. We therefore aimed to elucidate the function of BRD4 and the effects of JQ1 in EC in vivo and in vitro. Methods The mRNA expression of BRD4 was evaluated using datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). BRD4 protein expression in EC tissues was measured using immunohistochemistry (IHC) assays. The effects of JQ1 on EC were determined by using MTT and colony formation assays, flow cytometry and xenograft mouse models. The underlying mechanism was also examined by western blot and small interfering RNA (siRNA) transfection. Results BRD4 was overexpressed in EC tissues, and the level of BRD4 expression was strongly related to poor prognosis. The BRD4-specific inhibitor JQ1 suppressed cell proliferation and colony formation and triggered cell apoptosis, cell cycle arrest, and changes in the expression of proteins in related signaling pathways. Moreover, JQ1 decreased the protein expression of BRD4 and c-Myc, and knockdown of BRD4 or c-Myc reduced the viability of EC cells. Intraperitoneal administration of JQ1 (50 mg/kg) significantly suppressed the tumorigenicity of EC cells in a xenograft mouse model. Conclusion Our results demonstrate that BRD4 is a potential marker of EC and that the BRD4 inhibitor JQ1 is a promising chemotherapeutic agent for the treatment of EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.