In many drug delivery strategies, an inefficient transfer of macromolecules such as proteins and nucleic acids to the cytosol often occurs because of their endosomal entrapment. One of the methods to overcome this problem is photochemical internalization, which is achieved using a photosensitizer and light to facilitate the endosomal escape of the macromolecule. In this study, we examined the molecular mechanism of photochemical internalization of cell penetrating peptide-cargo (macromolecule)-photosensitizer conjugates. We measured the photophysical properties of eight dyes (photosensitizer candidates) and determined the respective endosomal escape efficiencies using these dyes. Correlation plots between these factors indicated that the photogenerated 1O2 molecules from photosensitizers were highly related to the endosomal escape efficiencies. The contribution of 1O2 was confirmed using 1O2 quenchers. In addition, time-lapse fluorescence imaging showed that the photoinduced endosomal escape occurred at a few seconds to a few minutes after irradiation (much longer than 1O2 lifetime), and that the pH increased in the endosome prior to the endosomal escape of the macromolecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.