Metal sulfides are highly active photocatalysts for water reduction to form H2 under visible light irradiation, whereas they are unfavorable for water oxidation to form O2 because of severe self-photooxidation (i.e., photocorrosion). Construction of a Z-scheme system is a useful strategy to split water into H2 and O2 using such photocorrosive metal sulfides because the photogenerated holes in metal sulfides are efficiently transported away. Here, we demonstrate powdered Z-schematic water splitting under visible light and simulated sunlight irradiation by combining metal sulfides as an H2-evolving photocatalyst, reduced graphene oxide (RGO) as an electron mediator, and a visible-light-driven BiVO4 as an O2-evolving photocatalyst. This Z-schematic photocatalyst composite is also active in CO2 reduction using water as the sole electron donor under visible light.
Conspectus Photocatalytic and photoelectrochemical CO2 reduction of artificial photosynthesis is a promising chemical process to solve resource, energy, and environmental problems. An advantage of artificial photosynthesis is that solar energy is converted to chemical products using abundant water as electron and proton sources. It can be operated under ambient temperature and pressure. Especially, photocatalytic CO2 reduction employing a powdered material would be a low-cost and scalable system for practical use because of simplicity of the total system and simple mass-production of a photocatalyst material. In this Account, single particulate photocatalysts, Z-scheme photocatalysts, and photoelectrodes are introduced for artificial photosynthetic CO2 reduction. It is indispensable to use water as an electron donor (i.e., reasonable O2 evolution) but not to use a sacrificial reagent of a strong electron donor, for achievement of the artificial photosynthetic CO2 reduction accompanied by ΔG > 0. Confirmations of O2 evolution, a ratio of reacted e– to h+ estimated from obtained products, a turnover number, and a carbon source of a CO2 reduction product are discussed as the key points for evaluation of photocatalytic and photoelectrochemical CO2 reduction. Various metal oxide photocatalysts with wide band gaps have been developed for water splitting under UV light irradiation. However, these bare metal oxide photocatalysts without a cocatalyst do not show high photocatalytic CO2 reduction activity in an aqueous solution. The issue comes from lack of a reaction site for CO2 reduction and competitive reaction between water and CO2 reduction. This raises a key issue to find a cocatalyst and optimize reaction conditions defining this research field. Loading a Ag cocatalyst as a CO2 reduction site and NaHCO3 addition for a smooth supply of hydrated CO2 molecules as reactant are beneficial for efficient photocatalytic CO2 reduction. Ag/BaLa4Ti4O15 and Ag/NaTaO3:Ba reduce CO2 to CO as a main reduction reaction using water as an electron donor even in just water and an aqueous NaHCO3 solution. A Rh–Ru cocatalyst on NaTaO3:Sr gives CH4 with 10% selectivity (Faradaic efficiency) based on the number of reacted electrons in the photocatalytic CO2 reduction accompanied by O2 evolution by water oxidation. Visible-light-responsive photocatalyst systems are indispensable for efficient sunlight utilization. Z-scheme systems using CuGaS2, (CuGa)1–x Zn2x S2, CuGa1–x In x S2, and SrTiO3:Rh as CO2-reducing photocatalyst, BiVO4 as O2-evolving photocatalyst, and reduced graphene oxide (RGO) and Co-complex as electron mediator or without an electron mediator are active for CO2 reduction using water as an electron donor under visible light irradiation. These metal sulfide photocatalysts have the potential to take part in Z-scheme systems for artificial photosynthetic CO2 reduction, even though their ability to extract electrons from water is insufficient. A photoelectrochemical system using a photocathode is also attractive for CO2 reducti...
We demonstrated photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by a Z-scheme photocatalyst and a photoelectrochemical cell using bare (CuGa)0.5ZnS2 prepared by a flux method as a CO2-reducing photocatalyst. The Z-scheme system employing the bare (CuGa)0.5ZnS2 photocatalyst and RGO-(CoO x /BiVO4) as an O2-evolving photocatalyst produced CO of a CO2 reduction product accompanied by H2 and O2 in a simple suspension system without any additives under visible light irradiation and 1 atm of CO2. When a basic salt (i.e., NaHCO3, NaOH, etc.) was added into the reactant solution (H2O + CO2), the CO formation rate and the CO selectivity increased. The same effect of the basic salt was observed for sacrificial CO2 reduction using SO3 2– as an electron donor over the bare (CuGa)0.5ZnS2 photocatalyst. The selectivity for the CO formation of the Z-schematic CO2 reduction reached 10–20% in the presence of the basic salt even in an aqueous solution and without loading any cocatalysts on the (CuGa)0.5ZnS2 metal sulfide photocatalyst. It is notable that CO was obtained accompanied by reasonable O2 evolution, indicating that water was an electron donor for the CO2 reduction. Moreover, the present Z-scheme system also showed activity for solar CO2 reduction using water as an electron donor. The bare (CuGa)0.5ZnS2 powder loaded on an FTO glass was also used as a photocathode for CO2 reduction under visible light irradiation. CO and H2 were obtained on the photocathode with 20% and 80% Faradaic efficiencies at 0.1 V vs RHE, respectively.
Visible-light-driven Z-schematic CO2 reduction using H2O as an electron donor was achieved using a simple mixture of a metal-sulfide/molecular hybrid photocatalyst for CO2 reduction, a water oxidation photocatalyst and a redox-shuttle electron mediator. This is the first demonstration of a highly selective particulate CO2 reduction system accompanying O2 generation utilizing a semiconductor/molecular hybrid photocatalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.