Background
Recently, the combination of deep learning and time-lapse imaging provides an objective, standard and scientific solution for embryo selection. However, the reported studies were based on blastocyst formation or clinical pregnancy as the end point. To the best of our knowledge, there is no predictive model that uses the outcome of live birth as the predictive end point. Can a deep learning model predict the probability of live birth from time-lapse system?
Methods
This study retrospectively analyzed the time-lapse data and live birth outcomes of embryos samples from January 2018 to November 2019. We used the SGD optimizer with an initial learning rate of 0.025 and cosine learning rate reduction strategy. The network is randomly initialized and trained for 200 epochs from scratch. The model is quantitively evaluated over a hold-out test and a 5-fold cross-validation by the average area under the curve (AUC) of the receiver operating characteristic (ROC) curve.
Results
The deep learning model was able to predict live birth outcomes from time-lapse images with an AUC of 0.968 in 5-fold stratified cross-validation.
Conclusions
This research reported a deep learning model that predicts the live birth outcome of a single blastocyst transfer. This efficient model for predicting the outcome of live births can automatically analyze the time-lapse images of the patient’s embryos without the need for manual embryo annotation and evaluation, and then give a live birth prediction score for each embryo, and sort the embryos by the predicted value.
In contrast to images taken on land scenes, images taken over water are more prone to degradation due to the influence of the haze. However, existing image dehazing methods are mainly developed for land-scene images and perform poorly when applied to overwater images. To address this problem, we collect the first overwater image dehazing dataset and propose a Generative Adversial Network (GAN)-based method called OverWater Image Dehazing GAN (OWI-DehazeGAN). Due to the difficulties of collecting paired hazy and clean images, the dataset contains unpaired hazy and clean images taken over water. The proposed OWI-DehazeGAN is composed of an encoder–decoder framework, supervised by a forward-backward translation consistency loss for self-supervision and a perceptual loss for content preservation. In addition to qualitative evaluation, we design an image quality assessment neural network to rank the dehazed images. Experimental results on both real and synthetic test data demonstrate that the proposed method performs superiorly against several state-of-the-art land dehazing methods. Compared with the state-of-the-art, our method gains a significant improvement by 1.94% for SSIM, 7.13% for PSNR and 4.00% for CIEDE2000 on the synthetic test dataset.
Abstract. The present budget system plays an important role in strengthening the power enterprise management, ensuring the realization of the corporate strategic goal and improving corporate benefit steadily. However because of the economic and conditional limits, the comprehensive budget management system in county's power supply enterprises still have some urgent problems to be resolved. In this paper, through analyzing these problems, the author discusses the measures of improving comprehensive budget management system in county's power supply enterprises. Combined with the particularity of the county's power supply enterprise, established the capital expenditure budget management system and the cost and expense budget management system, in order to enrich the application mode of our budget management theory in the county power supply enterprise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.