BackgroundCircular RNAs are key regulators in human cancers, however, there is a lack of studies on circRNAs’ specific functions in ovarian cancer.MethodsOur study used qRT-PCR to detect the differentially expressed circRNAs between normal ovaries and ovarian cancer tissues. Cell function experiments were performed to verify the role of overexpression and silence of circWHSC1, including MTT assay, cell apoptosis assay, wound healing and Matrigel-coated Transwell assay. In vivo tumorigenesis model was constructed by subcutaneous injection in nude mice. Bioinformatics analysis predicted the possible binding sites of circWHSC1 with miRNAs, and confirmed with dual-luciferase reporter assay and RNA pull-down assay. The exosomes were extracted with ultracentrifugation. HE staining was also used to detect morphology of nude mice peritoneum.ResultsWe found that circWHSC1 was up-regulated in ovarian cancer tissues, and circWHSC1 expression was higher in moderate & poor differentiation ovarian cancer tissues than in well differentiation ovarian cancer tissues. Overexpression of circWHSC1 increased cell proliferation, migration and invasion, and inhibited cell apoptosis. Silence of circWHSC1 exerted the opposite effects. Additionally, circWHSC1 could sponge miR-145 and miR-1182 and up-regulate the expression of downstream targets MUC1 and hTERT. Exosomal circWHSC1 can be transferred to peritoneal mesothelial cells and promotes peritoneal dissemination.ConclusionsOur study demonstrates the highly expressed circWHSC1 in ovarian cancer promotes tumorigenesis by sponging miR-145 and miR-1182, and its exosome forms induce tumor metastasis through acting on peritoneal mesothelium.
BackgroundThere is increasing evidence in support of the role of lncRNAs in tumor cell proliferation, differentiation and apoptosis.MethodsWe examined the expression of the lncRNA ABHD11-AS1 in epithelial ovarian cancer (EOC) tissues and normal ovarian tissues by real-time quantitative PCR (qRT-PCR). After inducing ABHD11-AS1 downregulation by small interfering RNA (siRNA) or ABHD11-AS1 overexpression by plasmid transfection, we examined the EOC cell phenotypes and expression of related molecules.ResultsExpression of the lncRNA ABHD11-AS1 in EOC tissues was higher than that in normal ovarian tissue. It was positively associated with the tumor stage (stage I/II vs. stage III/IV), and it was lower in the well-differentiated group than in the poorly/moderately differentiated group. Overexpression of ABHD11-AS1 in the ovarian cancer cell lines A2780 and OVCAR3 promoted ovarian cancer cell proliferation, invasion and migration, and inhibited apoptosis. Silencing of ABHD11-AS1 had the opposite effect. Subcutaneous injection of tumor cells in nude mice showed that ABHD11-AS1 could significantly promote tumor growth. In addition, intraperitoneal injection of tumor cells in the nude mice resulted in an increase in the metastatic ability of the tumor. Further, overexpression of ABHD11-AS1 upregulated the expression of RhoC and its downstream molecules P70s6k, MMP2 and BCL-xL. Silencing of ABHD11-AS1 had the opposite effect. The RNA pull-down assay showed that ABHD11-AS1 can combine directly with RhoC. Silencing of RhoC was found to inhibit the cancer-promoting effects of lncRNA ABHD11-AS1. Thus, it seems that RhoC is a major target of the lncRNA ABHD11-AS1.ConclusionsThis is the first study to demonstrate the role of RhoC in the tumor-promoting effects of the lncRNA ABHD11-AS1. The present findings shed light on new therapeutic targets for ovarian cancer treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0709-5) contains supplementary material, which is available to authorized users.
BackgroundEndometrial carcinoma (EC) is one of the most lethal gynecologic cancers. Patients frequently have regional or distant metastasis at diagnosis. MicroRNAs are small non-coding RNAs that participate in numerous biological processes. Recent studies have demonstrated that miR-505 is associated with several types of cancer; however, the expression and function of miR-505 have not been investigated in EC.MethodsmiR-505 expression in normal endometrial tissue, endometrial carcinomas were quantified by Quantitative reverse transcription PCR. The endometrial carcinoma cell lines HEC-1B and Ishikawa were each transfected with miR-505 or scrambled mimics, after which cell phenotype and expression of relevant molecules were assayed. Dual-luciferase reporter assay and a xenograft mouse model were used to examine miR-505 and its target gene TGF-α.ResultsRT-PCR results demonstrated that miR-505 was significantly downregulated in human EC tissues compared to normal endometrial tissues. Besides, miR-505 expression was negatively associated with FIGO stage (stage I-II vs. III-IV), and lymph node metastasis (negative vs. positive). In vitro, overexpression of miR-505 significantly suppressed EC cell proliferation, increased apoptosis and reduced migratory and invasive activity. A miR-505 binding site was identified in the 3′ untranslated region of TGF-α mRNA (TGFA) using miRNA target-detecting software; a dual luciferase reporter assay confirmed that miR-505 directly targets and regulates TGFA. RT-PCR and Western-blotting results indicated that overexpressing miR-505 reduced the expression of TGF-α and the TGF-α-regulated proteins MMP2, MMP9, CDK2, while induced Bax and cleaved-PARP expression in EC cells. In vivo, overexpression of miR-505 reduced the tumorigenicity and inhibited the growth of xenograft tumors in a mouse model of EC.ConclusionsTaken together, this study demonstrates that miR-505 acts as tumor suppressor in EC by regulating TGF-α.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-016-0496-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.