Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å−1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å−1, and a system response function of 150 fs.
Excitons, Coulomb‐bound electron–hole pairs, are the fundamental excitations governing the optoelectronic properties of semiconductors. Although optical signatures of excitons have been studied extensively, experimental access to the excitonic wave function itself has been elusive. Using multidimensional photoemission spectroscopy, we present a momentum‐, energy‐, and time‐resolved perspective on excitons in the layered semiconductor WSe2. By tuning the excitation wavelength, we determine the energy–momentum signature of bright exciton formation and its difference from conventional single‐particle excited states. The multidimensional data allow to retrieve fundamental exciton properties like the binding energy and the exciton–lattice coupling and to reconstruct the real‐space excitonic distribution function via Fourier transform. All quantities are in excellent agreement with microscopic calculations. Our approach provides a full characterization of the exciton properties and is applicable to bright and dark excitons in semiconducting materials, heterostructures, and devices. Key points The full life cycle of excitons is recorded with time‐ and angle‐resolved photoemission spectroscopy. The real‐space distribution of the excitonic wave function is visualized. Direct measurement of the exciton‐phonon interaction.
Quasi-two-dimensional colloidal nanoplatelets (NPLs) have recently emerged as a class of semiconductor nanomaterials whose atomically precise monodisperse thicknesses give rise to narrow absorption and emission spectra. However, the sub-picosecond carrier dynamics of NPLs at the band edge remain largely unknown, despite their importance in determining the optoelectronic properties of these materials. Here, we use a combination of femtosecond transient absorption spectroscopy and nonadiabatic molecular dynamics simulations to investigate the early time carrier dynamics of CdSe/CdS core/shell NPLs. Band-selective probing reveals sub-picosecond Auger-mediated trapping of holes with an effective second-order rate constant of 3.5 ± 1.0 cm/s. Concomitant spectral blue shifts that are indicative of Auger hole heating are found to occur on the same time scale as the sub-picosecond trapping dynamics, whereas spectral red shifts that emerge at low excitation densities furnish an electron-cooling time scale of 0.84 ± 0.09 ps. Finally, nonadiabatic molecular dynamics simulations relate the observed sub-picosecond Auger-mediated hole-trapping dynamics to a shallow trap state that originates from the incomplete passivation of dangling bonds on the NPL surface.
In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman's rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.