Background. Cryptotanshinone (CPT), an active component extracted from the root of Salvia miltiorrhiza Bunge, exhibits extensive favorable bioactive properties including anti-inflammatory, antioxidative, antibacterial, and antitumor effects. This study aims to investigate the effects of CPT on osteogenesis and explore related mechanisms both in vivo and in vitro. Methods. In the in vivo experiment, ovariectomized (OVX) female rats were intragastrically administered with CPT at doses of 10 mg/kg and 20 mg/kg for 13 consecutive weeks. Dual-energy X-ray absorptiometry was employed to detect bone mineral density (BMD). ELISA assay was leveraged to detect the biochemical parameters such as BUN and creatinine in the kidney samples. Bone and kidney sections were dyed by H&E and Masson staining kits. In the in vitro experiment, the RAW 264.7 cells were stimulated through the receptor activation of the nuclear factor kappa B ligand (RANKL) to establish an osteoclast differentiation model, and CPT’s protective effect against bone loss was evaluated. Differentiated osteoclasts were determined by TRAP staining. While, osteoclast-marker proteins such as NFATc1, c-Fos, and cathepsin K were identified by Western blot. Results. The results from in vivo experiments revealed that CPT could elevate bone mass and increase bone formation markers in OVX rats. Intriguingly, CPT administration noticeably ameliorated the kidney injury in OVX rats by suppressing BUN and restoring creatinine levels. Furthermore, the results from in vitro experiments suggested that CPT downregulated the protein expression of osteoclast-associated genes such as cathepsin K, c-Fos, and NFATc1 which hinted the related potential mechanisms. Conclusion. The evidence from in vivo and in vitro experiments suggested that CPT exerted antiosteoclastogenic effects by inhibiting the activation of osteoclast differentiation followed by suppressing the protein expressions of cathepsin K, c-Fos, and NFATc1 in osteoclast precursors, and it exhibited protective effects against kidney damage, which highlighted its advantage in clinical application.
Background: This study aimed to establish AMH age-specific reference intervals and determine the correlation between the AMH level and age, body mass index (BMI), and levels of follicle-stimulating hormones (FSH) and luteinizing hormone (LH) in healthy Chinese girls. Methods: Serum AMH levels of 1702 healthy girls (0ï12 years), recruited between March 2018 and December 2019, were determined using the Beckman Access 2 automated chemiluminescence immunoassay. Single-year-specific medians of AMH and effects of age, BMI, FSH, and LH on AMH level were analyzed. Results: The AMH median level continued increasing from birth, reached its peak at age 9 at 4.45 ng/mL (interquartile rangeï¼»IQRï¼½2.58-6.90), and then gradually decreased. At age 12, the median reached 1.98 ng/mL (IQR 1.05~3.46). Age-specific reference intervals for AMH were established in healthy Chinese girls aged 0â12 years. AMH levels showed a moderately positive correlation with age (r = 0.33, P < 0.001). In contrast, FSH (r = â0.29, P < 0.001) levels were weakly negatively correlated with the serum AMH level. Conclusion: We established single-year-specific reference intervals for AMH in Chinese girls using the Beckman chemiluminescent platform. This reference range can help clinicians accurately understand AMH secretion in healthy girls and promote its clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.