The characteristics of elongated MnS have a critical effect on fatigue anisotropy and all mechanical anisotropies. A comparative investigation of nonmetallic inclusions in both stainless steels and tool steels has been carried out in this study. The inclusion characteristics were investigated using electrolytic extraction (EE) followed by scanning electron microscopy combined with energy-dispersive spectroscopy (SEM-EDS). Overall, three types of MnS inclusions (type I (regular), type II (irregular) and type III (Rod)) were found in tool steels in as-cast samples, which had not been heat-treated. Furthermore, three types of MnS inclusions (Rod-like sulfide (RS), Plate-like sulfide (PS) and Oxysulfide (OS)) were found in samples taken after rolling. Based on the breakability of the elongated MnS, three types of inclusions, Type UU, UB and BB, where U represents the undamaged or unbroken edge of an inclusion and B represents the fragment or broken edge of an inclusion, were studied in both stainless steels and tool steels both before and after additional heat treatment. The effect of heat treatment and dissolving the metal layer during the EE process is also discussed. The results show that both processes have a limited effect on the breakability of inclusions in steels with carbon contents <0.42 mass%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.