Introduction The purpose was to examine relations among spasticity, weakness, force variability, and sustained spontaneous motor unit discharges in spastic-paretic biceps brachii muscles in chronic stroke. Methods Ten chronic stroke subjects produced submaximal isometric elbow flexion force on impaired and non-impaired sides. Intramuscular EMG (iEMG) was recorded from biceps and triceps brachii muscles. Results We observed sustained spontaneous motor unit discharges in the resting biceps on iEMG. Spontaneous discharges increased after voluntary activation only on the impaired side. The impaired side had greater matching errors and greater fluctuations in isometric force. Spontaneous discharges were not functionally related to spasticity, force variability, or weakness. However, greater strength on the impaired side correlated with less force variability. Conclusion Weakness rather than spasticity is a main factor interfering with voluntary force control in paretic-spastic biceps brachii muscles in chronic stroke.
BackgroundRobotic wearable exoskeletons have been utilized as a gait training device in persons with spinal cord injury. This pilot study investigated the feasibility of offering exoskeleton-assisted gait training (EGT) on gait in individuals with incomplete spinal cord injury (iSCI) in preparation for a phase III RCT. The objective was to assess treatment reliability and potential efficacy of EGT and conventional physical therapy (CPT).MethodsForty-four individuals were screened, and 13 were eligible to participate in the study. Nine participants consented and were randomly assigned to receive either EGT or CPT with focus on gait. Subjects received EGT or CPT, five sessions a week (1 h/session daily) for 3 weeks. American Spinal Injury Association (ASIA) Lower Extremity Motor Score (LEMS), 10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), Timed Up and Go (TUG) test, and gait characteristics including stride and step length, cadence and stance, and swing phase durations were assessed at the pre- and immediate post- training. Mean difference estimates with 95% confidence intervals were used to analyze the differences.ResultsAfter training, improvement was observed in the 6MWT for the EGT group. The CPT group showed significant improvement in the TUG test. Both the EGT and the CPT groups showed significant increase in the right step length. EGT group also showed improvement in the stride length.ConclusionEGT could be applied to individuals with iSCI to facilitate gait recovery. The subjects were able to tolerate the treatment; however, exoskeleton size range may be a limiting factor in recruiting larger cohort of patients. Future studies with larger sample size are needed to investigate the effectiveness and efficacy of exoskeleton-assisted gait training as single gait training and combined with other gait training strategies.Trial registrationClinicaltrials.org, NCT03011099, retrospectively registered on January 3, 2017.
Context: Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases.Objective: To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extracellular protein responses of exercise.Design: Randomized controlled trial. Setting: University research laboratory. Patients or Other Participants: Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered.Intervention(s): Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress.Main Outcome Measure(s): Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. Results: After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F 6,24 = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F 6,24 = 10.1, P < .001) and 5 mm Hg (F 6,24 = 5.4, P < .001), respectively. Norepinephrine (F 1,12 = 12.1, P = .004) and prolactin (F 1,12 = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F 1,12 = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials.Conclusions: We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether carefully prescribed heat stress constitutes a method to augment or supplement exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.