Revealing the linkages between community assembly and species coexistence, which is crucial for the understanding of ecosystem diversity and functioning, is a fundamental but rarely investigated subject in microbial ecology. Here we examined archaeal, bacterial, and fungal community assembly in adjacent pairs of maize (water-unsaturated) and rice (watersaturated) fields across different habitats and regions throughout Eastern China. The high-throughput sequencing dataset was analyzed by variation partitioning, null model, and neutral community model analyses. We demonstrated that microbial community assembly was governed more by species sorting than by dispersal limitation in maize fields, and to a lesser extent in rice fields. The relative importance of species sorting in maize soils was greater at low latitudes than at high latitudes, while rice soils exhibited an opposite trend. Microbial co-occurrence associations tended to be higher when communities were primarily driven by dispersal limitation relative to species sorting. There were greater community dissimilarities between maize and rice soils in low-latitude regions, which was consistent with the higher proportion of negative edges in the correlation networks. The results indicate that a balance between species sorting and dispersal limitation mediates species coexistence in soil microbiomes. This study enhances our understanding of contemporary coexistence theory in microbial ecosystems.
BackgroundSoil microbiomes play an important role in the services and functioning of terrestrial ecosystems. However, little is known of their vertical responses to restoration process and their contributions to soil nutrient cycling in the subsurface profiles. Here, we investigated the community assembly of soil bacteria, archaea, and fungi along vertical (i.e., soil depths of 0–300 cm) and horizontal (i.e., distance from trees of 30–90 cm) profiles in a chronosequence of reforestation sites that represent over 30 years of restoration.ResultsIn the superficial layers (0–80 cm), bacterial and fungal diversity decreased, whereas archaeal diversity increased with increasing soil depth. As reforestation proceeded over time, the vertical spatial variation in bacterial communities decreased, while that in archaeal and fungal communities increased. Vertical distributions of the soil microbiomes were more related to the variation in soil properties, while their horizontal distributions may be driven by a gradient effect of roots extending from the tree. Bacterial and archaeal beta-diversity were strongly related to multi-nutrient cycling in the soil, respectively, playing major roles in deep and superficial layers.ConclusionsTaken together, these results reveal a new perspective on the vertical and horizontal spatial variation in soil microbiomes at the fine scale of single trees. Distinct response patterns underpinned the contributions of soil bacteria, archaea, and fungi as a function of subsurface nutrient cycling during the reforestation of ex-arable land.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0526-0) contains supplementary material, which is available to authorized users.
Revealing the fundamental mechanisms for maintaining and generating species diversity is critical to determine the links between community stability and ecosystem function (Hanson, Fuhrman,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.