Background In the early stages of the outbreak of coronavirus disease 2019 (COVID-19) in Hubei, China, the local healthcare system was overwhelmed. Physicians and nurses who had no infectious disease expertise were recruited to provide care to patients with COVID-19. To our knowledge, no studies on their experiences of combating COVID-19 have been published. We aimed to describe the experiences of these health-care providers in the early stages of the outbreak.Methods We did a qualitative study using an empirical phenomenological approach. Nurses and physicians were recruited from five COVID-19-designated hospitals in Hubei province using purposive and snowball sampling. They participated in semi-structured, in-depth interviews by telephone from Feb 10 to Feb 15, 2020. Interviews were transcribed verbatim and analysed using Haase's adaptation of Colaizzi's phenomenological method.Findings We recruited nine nurses and four physicians. Three theme categories emerged from data analysis. The first was "being fully responsible for patients' wellbeing-'this is my duty'". Health-care providers volunteered and tried their best to provide care for patients. Nurses had a crucial role in providing intensive care and assisting with activities of daily living. The second category was "challenges of working on COVID-19 wards". Health-care providers were challenged by working in a totally new context, exhaustion due to heavy workloads and protective gear, the fear of becoming infected and infecting others, feeling powerless to handle patients' conditions, and managing relationships in this stressful situation. The third category was "resilience amid challenges". Health-care providers identified many sources of social support and used self-management strategies to cope with the situation. They also achieved transcendence from this unique experience. InterpretationThe intensive work drained health-care providers physically and emotionally. Health-care providers showed their resilience and the spirit of professional dedication to overcome difficulties. Comprehensive support should be provided to safeguard the wellbeing of health-care providers. Regular and intensive training for all healthcare providers is necessary to promote preparedness and efficacy in crisis management.
The spike protein of SARS-CoV-2 has been undergoing mutations and is highly glycosylated. It is critically important to investigate the biological significance of these mutations. Here, we investigated 80 variants and 26 glycosylation site modifications for the infectivity and reactivity to a panel of neutralizing antibodies and sera from convalescent patients. D614G, along with several variants containing both D614G and another amino acid change, were significantly more infectious. Most variants with amino acid change at receptor binding domain were less infectious, but variants including A475V, L452R, V483A, and F490L became resistant to some neutralizing antibodies. Moreover, the majority of glycosylation deletions were less infectious, whereas deletion of both N331 and N343 glycosylation drastically reduced infectivity, revealing the importance of glycosylation for viral infectivity. Interestingly, N234Q was markedly resistant to neutralizing antibodies, whereas N165Q became more sensitive. These findings could be of value in the development of vaccine and therapeutic antibodies.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
The recently proposed digital coding metasurfaces make it possible to control electromagnetic (EM) waves in real time, and allow the implementation of many different functionalities in a programmable way. However, current configurations are only space-encoded, and do not exploit the temporal dimension. Here, we propose a general theory of space-time modulated digital coding metasurfaces to obtain simultaneous manipulations of EM waves in both space and frequency domains, i.e., to control the propagation direction and harmonic power distribution simultaneously. As proof-of-principle application examples, we consider harmonic beam steering, beam shaping, and scattering-signature control. For validation, we realize a prototype controlled by a field-programmable gate array, which implements the harmonic beam steering via an optimized space-time coding sequence. Numerical and experimental results, in good agreement, demonstrate good performance of the proposed approach, with potential applications to diverse fields such as wireless communications, cognitive radars, adaptive beamforming, holographic imaging.
Metasurfaces have enabled a plethora of emerging functions within an ultrathin dimension, paving way towards flat and highly integrated photonic devices. Despite the rapid progress in this area, simultaneous realization of reconfigurability, high efficiency, and full control over the phase and amplitude of scattered light is posing a great challenge. Here, we try to tackle this challenge by introducing the concept of a reprogrammable hologram based on 1-bit coding metasurfaces. The state of each unit cell of the coding metasurface can be switched between ‘1’ and ‘0’ by electrically controlling the loaded diodes. Our proof-of-concept experiments show that multiple desired holographic images can be realized in real time with only a single coding metasurface. The proposed reprogrammable hologram may be a key in enabling future intelligent devices with reconfigurable and programmable functionalities that may lead to advances in a variety of applications such as microscopy, display, security, data storage, and information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.