A gas–liquid swirling flow with shear-thinning liquid rheology exhibits complex behavior. In order to investigate its flow characteristics, experiments and computational fluid dynamics (CFD) simulations are conducted based on dimensional analysis. A Malvern particle size analyzer and electrical resistance tomography are applied to obtain the bubble size distribution and section void fraction. A Coriolis mass flowmeter is applied to obtain the mixture flow rate and mixture density for an entrance gas volume fraction smaller than 7%. The CFD coupled mixture multiphase model and large eddy simulation model are applied, considering the liquid shear-thinning power-law rheology. The results show that the swirling flow can be divided into developing and decaying sections according to the swirl intensity evolution in the axial direction. A gas–liquid swirl flow with shear-thinning liquid prohibits a core-annulus flow structure. A smaller index n contributes to maintaining the development of the swirl flow field and its core-annulus flow structure so that the swirl flow can form over a shorter distance with a stronger intensity. For a more uniform distribution of the apparent viscosity, the gas column in the pipe center is thinner. On the other hand, a larger consistency k enlarges the stress tensor. The amplitude of the velocity and the pressure of the core-annulus flow structure are reduced. A weaker swirl intensity appears with a wider gas column appearing as a consequence. Furthermore, the swirl number decays with an exponential behavior with parameters sensitive to the consistency k and index n of the decaying section of the swirling flow field. These are beneficial to gas–liquid separator design and optimization when encountering the shear-thinning power-law liquid phase in the petroleum industry.
In natural gas wells, liquid loading is a severe problem threatening production safety. Published studies have verified that liquid loading is closely related to film reversal in gas–liquid annular flow, but the evolution of the film reversal is still unclear. This article reports on experiments conducted to reveal the film reversal evolution characteristics. Experiments were conducted in a 50-mm-diameter vertical pipe with superficial gas velocities ranging from 5.66 to 22.64 m/s and superficial liquid velocities ranging from 0.014 to 0.170 m/s. A camera and electrical resistance tomography were used to obtain qualitative and quantitative results, and an error analysis verified the experiments’ repeatability and reliability. The evolution process is divided objectively into three stages to clarify the film reversal: no film reversal (No-FR), the onset of film reversal (Onset-FR), and complete film reversal (Complete-FR). The three stages occur successively with decreasing gas velocity. The characteristics of the individual stages are elaborated, including the interfacial structures, morphological features, and motion trajectories. The void fractions are analyzed in both the time and frequency domains, where the statistical parameters of the probability density function, average value, and standard deviation are presented. The results show that the Onset-FR stage exhibits characteristics similar to both the No-FR and Complete-FR stages, indicating that it plays an intermediate role in the gradual evolutionary process. The current experimental results also achieve excellent agreement with published datasets and correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.