Novelty detection (ND) has gained attention in many applications for its effectiveness in dealing with imbalanced data. Many ND algorithms have been proposed. For example, the level set boundary description (LSBD) algorithm can accurately estimate a boundary around normal data which is subsequently used to detect novelties. However, the computational complexity and the convergence time of the LSBD algorithms increases substantially when data dimensionality increases. To solve those challenges, we propose an Integrated Autoencoder-Level Set Method (AE-LSM) for ND in this paper. The AE structure is employed to reduce the feature space with high dimensionality to a 3-dimensional (3D) space. The LSM algorithm is trained based on the compressed 3D data to identify the boundary of normal data. The AE-LSM has advantages of boundary control and good generalization performance. Experiments on 5 benchmark UCI datasets and an Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed AE-LSM present a 3%~14% significant improvement based on the average AUC (p<0.05) over the AE and LSBD algorithms across the six datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.