Analysis of instrumental variables is an effective approach to dealing with endogenous variables and unmeasured confounding issue in causal inference. We propose using the piecewise linear model to fit the relationship between the continuous instrumental variable and the continuous explanatory variable, as well as the relationship between the continuous explanatory variable and the outcome variable, which generalizes the traditional linear instrumental variable models. The two-stage least square and limited information maximum likelihood methods are used for the simultaneous estimation of the regression coefficients and the threshold parameters. Furthermore, we study the limiting distribution of the estimators in the correctly specified and misspecified models and provide a robust estimation of the variance-covariance matrix. We illustrate the finite sample properties of the estimation in terms of the Monte Carlo biases, standard errors, and coverage probabilities via the simulated data. Our proposed model is applied to an education-salary data, which investigates the causal effect of children’s years of schooling on estimated hourly wage with father’s years of schooling as the instrumental variable.
Proportional hazards model with the biomarker-treatment interaction plays an important role in the survival analysis of the subset treatment effect. A threshold parameter for a continuous biomarker variable defines the subset of patients who can benefit or lose from a certain new treatment. In this article, we focus on a continuous threshold effect using the rectified linear unit and propose a gradient descent method to obtain the maximum likelihood estimation of the regression coefficients and the threshold parameter simultaneously. Under certain regularity conditions, we prove the consistency, asymptotic normality and provide a robust estimate of the covariance matrix when the model is misspecified. To illustrate the finite sample properties of the proposed methods, we simulate data to evaluate the empirical biases, the standard errors and the coverage probabilities for both the correctly specified models and misspecified models. The proposed continuous threshold model is applied to a prostate cancer data with serum prostatic acid phosphatase as a biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.