Celiac disease is caused by an abnormal intestinal T-cell response to gluten proteins of wheat, barley and rye. Over the last few years, a number of gluten T-cell epitopes restricted by celiac disease associated HLA-DQ molecules have been characterized. In this work, we give an overview of these epitopes and suggest a comprehensive, new nomenclature.
Celiac disease (CD) is an immune mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2)1 are generated in response to the exogenous antigen gluten2 in individuals who are HLA-DQ2 or HLA-DQ83. We assessed in a comprehensive and non-biased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire on ex vivo isolated intestinal antibody-secreting cells (ASCs). We found that TG2-specific plasma cells are hugely expanded in patients with active CD, representing on average 10% of ASCs within the duodenal mucosa. Surprisingly, anti-TG2 antibodies were of high affinity and yet showed little adaptation by somatic mutations. Unlike infection-induced peripheral blood plasmablasts4, the TG2-specific ASCs had neither recently proliferated nor were they short-lived ex vivo. Altogether these observations demonstrate that there is a germline repertoire with high affinity for TG2 that may favour massive generation of autoreactive B cells. Anti-TG2 antibodies did not block enzymatic activity and served as substrates for TG2-mediated crosslinking when expressed as IgD or IgM, but not as IgA1 or IgG1. This could result in preferential recruitment of plasma cells from naïve IgD/IgM-expressing B cells, thus possibly explaining why the anti-TG2 response bears signs of a primary immune response despite the disease chronicity.
The neonatal Fc receptor for IgG (FcRn) is a distant member of the MHC class I protein family. It binds IgG and albumin in a pHdependent manner and protects these from catabolism by diverting them from a degradative fate in lysosomes. In addition, FcRn-mediated IgG transport across epithelial barriers is responsible for the transmission of IgG from mother to infant and can also enhance IgG-mediated antigen uptake across mucosal epithelia. We now show a previously undescribed role for FcRn in mediating the presentation of antigens by dendritic cells when antigens are present as a complex with antibody by uniquely directing multimeric immune complexes, but not monomeric IgG, to lysosomes.IgG ͉ immune complexes ͉ dendritic cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.