Thermal barrier coatings (TBCs) play a vitally important role in protecting the hot parts of a gas turbine from high temperature and corrosion effectively. More and more attention has been paid to the performance modification of ZrO2-based ceramics and seeking for new ceramic materials to meet requirements of gas turbine TBCs. The working principle, merits, and demerits of main technologies for coating preparation are elaborated in this paper, and the properties of new ceramic materials are reviewed. It is found that the thermal conductivity, thermal stability, mechanical properties, and other performances of traditional ZrO2-based ceramics could be improved effectively by doping modification. The emphases for new ceramic materials research were put on pyrochlores, magnetoplumbites, rare-earth tantalates, etc. Rare-earth tantalates with great potentials as new top ceramic materials were described in detail. In the end, the development directions of advanced top ceramic coatings, combining doping modification with preparation technology to regulate and control structure property of high-performance ceramic material, were put forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.