We propose the Rescaled Pure Greedy Learning Algorithm (RPGLA) for solving the kernel-based regression problem. The computational complexity of the RPGLA is less than the Orthogonal Greedy Learning Algorithm (OGLA) and Relaxed Greedy Learning Algorithm (RGLA). We obtain the convergence rates of the RPGLA for continuous kernels. When the kernel is infinitely smooth, we derive a convergence rate that can be arbitrarily close to the best rate [Formula: see text] under a mild assumption of the regression function.
We propose the Weak Rescaled Pure Super Greedy Algorithm (WRPSGA) for approximation with respect to a dictionary D in Hilbert space. The WRPSGA is simpler than some popular greedy algorithms. We show that the convergence rate of the RPSGA on the closure of the convex hull of the μ-coherent dictionary D is optimal. Then, we design the Rescaled Pure Super Greedy Learning Algorithm (RPSGLA) for kernel-based supervised learning. We prove that the convergence rate of the RPSGLA can be arbitrarily close to the best rate O(m−1) under some mild assumptions.
We study the approximation capability of the orthogonal super greedy algorithm (OSGA) with respect to μ-coherent dictionaries in Hilbert spaces. We establish the Lebesgue-type inequalities for OSGA, which show that the OSGA provides an almost optimal approximation on the first [1/(18μs)] steps. Moreover, we improve the asymptotic constant in the Lebesgue-type inequality of OGA obtained by Livshitz E D.
We propose the Group Orthogonal Matching Pursuit (GOMP) algorithm to recover group sparse signals from noisy measurements. Under the group restricted isometry property (GRIP), we prove the instance optimality of the GOMP algorithm for any decomposable approximation norm. Meanwhile, we show the robustness of the GOMP under the measurement error. Compared with the P-norm minimization approach, the GOMP is easier to implement, and the assumption of γ-decomposability is not required. The simulation results show that the GOMP is very efficient for group sparse signal recovery and significantly outperforms Basis Pursuit in both scalability and solution quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.