Cytochrome c oxidase contributes to the transmembrane proton gradient by removing two protons from the high-pH side of the membrane each time the binuclear center active site is reduced. One proton goes to the binuclear center, whereas the other is pumped to the low-pH periplasmic space. Glutamate 286 (Glu286) has been proposed to serve as a transiently deprotonated proton donor. Using unrestrained atomistic molecular dynamics simulations, we show that the size of and water distribution in the hydrophobic cavity that holds Glu286 is controlled by the protonation state of the propionic acid of heme a 3 , a group on the proton outlet pathway. Protonation of the propionate disrupts hydrogen bonding to two side chains, allowing a loop to swing open. Continuum electrostatics and atomistic free-energy perturbation calculations show that the resultant changes in hydration and electrostatic interactions lower the Glu proton affinity by at least 5 kcal/mol. These changes in the internal hydration level occur in the absence of major conformational transitions and serve to stabilize needed transient intermediates in proton transport. The trigger is not the protonation of the Glu of interest, but rather the protonation of a residue ∼10 Å away. Thus, unlike local water penetration to stabilize a new charge, this finding represents a specific role for water molecules in the protein interior, mediating proton transfers and facilitating ion transport.proton pumping | pK a W ater is essential to the structure, dynamics, and function of biomolecules (1, 2), and its role in protein folding, association (3), and dynamics (4, 5) has been well documented. The highly polar and polarizable water molecules play diverse roles in protein interiors. Water can aid catalysis in enzyme active sites (6-8). Water or water chains are often observed in proteins that are (9, 10) proton or ion transporters or pumps (11)(12)(13)(14). Internal cavities holding functional water molecules are believed to have a fairly constant level of hydration throughout the protein reaction cycle, unless significant conformational changes occur (15). Water penetration in response to the ionization or reduction of internal groups has been extensively discussed (16,17), although it is usually described as part of protein's local dielectric response.Cytochrome c oxidase (CcO) adds to the transmembrane proton gradient through proton transport coupled to electron transfer reactions (12,18,19). In the overall reaction, electrons from four cytochromes c are transferred to oxygen to make two water molecules at the binuclear center (BNC). The four protons needed for chemistry are bound only from the high-pH, N side of the membrane. Coupled to the process, four more protons are transferred across the membrane from the high-to low-pH (P) side of the membrane. Thus, eight charges are transferred across the membrane as each O 2 is reduced.Glu286 is a required, conserved residue that is expected to transfer protons from the D channel either to the BNC or the proton-loading site (...
Verticillium wilt causes enormous loss to yield or quality in many crops. In an effort to help controlling this disease through genetic engineering, we first cloned and characterized a Verticillium wilt resistance gene (GbVe) from cotton (Gossypium barbadense) and analyzed its function in Arabidopsis thaliana. Its nucleotide sequence is 3,819 bp long, with an open reading frame of 3,387 bp, and encoding an 1,128-aa protein precursor. Sequence analysis shows that GbVe produces a leucine-rich repeat receptor-like protein. It shares identities of 55.9% and 57.4% with tomato Ve1 and Ve2, respectively. Quantitative real-time PCR indicated that the Ve gene expression pattern was different between the resistant and susceptible cultivars. In the resistant Pima90-53, GbVe was quickly induced and reached to a peak at 2 h after inoculation, two-fold higher than that of control. We localized the GbVe-GFP fusion protein to the cytomembrane in onion epidermal cells. By inserting GbVe into Arabidopsis via Agrobacterium-mediated transformation, T(3) transgenic lines were obtained. Compared with the wild-type control, GbVe-overexpressing plants had greater levels of resistance to V. dahliae. This suggests that GbVe is a useful gene for improving the plant resistance against fungal diseases.
One of the key unresolved issues regarding proton pumping in cytochrome c oxidase (CcO) is the identity of the gating element that prevents the backflow of protons. In this study, we analyze two popular proposals for this element: isomerization of the key branching residue (Glu-286) and (re)orientation of water molecules in the hydrophobic cavity. Using a multifaceted set of computational analyses that involve CcO embedded in either an implicit or explicit treatment of lipid membrane, we show that neither Glu-286 nor active-site water likely constitutes the gating element. Detailed energetic and structural analyses of the simulation results indicate that the gating-relevant properties of these structural motifs observed in previous work are likely a result of the simplified computational models employed in those studies.
Recent QM/MM analyses of proton transfer function of human carbonic anhydrase II (CAII) are briefly reviewed. The topics include a preliminary analysis of nuclear quadrupole coupling constant calculations for the zinc ion and more detailed analyses of microscopic pK(a) of the zinc-bound water and free energy profile for the proton transfer. From a methodological perspective, our results emphasize that performing sufficient sampling is essential to the calculation of all these quantities, which reflects the well solvated nature of CAII active site. From a mechanistic perspective, our analyses highlight the importance of electrostatics in shaping the energetics and kinetics of proton transfer in CAII for its function. We argue that once the pK(a) for the zinc-bound water is modulated to be in the proper range (approximately 7.0), proton transfer through a relatively well solvated cavity towards/from the protein surface (His64) does not require any major acceleration. Therefore, although structural details like the length of the water wire between the donor and acceptor groups still may make a non-negligible contribution, our computational results and the framework of analysis suggest that the significance of such "fine-tuning" is likely secondary to the modulation of pK(a) of the zinc-bound water. We encourage further experimental analysis with mutation of (charged) residues not in the immediate neighborhood of the zinc ion to quantitatively test this electrostatics based framework; in particular, Phi analysis based on these mutations may shed further light into the relative importance of the classical Grotthus mechanism and the "proton hole" pathway that we have proposed recently for CAII.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.