Background: Obesity prevalence has become one of the most prominent issues in global public health. Physical activity has been recognized as a key player in the obesity epidemic. Objectives: The objectives of this study are to (1) examine the relationship between physical activity and weight status and (2) assess the performance and predictive power of a set of popular machine learning and traditional statistical methods. Methods: National Health and Nutrition Examination Survey (NHANES, 2003 to 2006) data were used. A total of 7162 participants met our inclusion criteria (3682 males and 3480 females), with average age ranging from 48.6 (normal weight) to 52.1 years old (overweight). Eleven classifying algorithms—including logistic regression, naïve Bayes, Radial Basis Function (RBF), local k-nearest neighbors (k-NN), classification via regression (CVR), random subspace, decision table, multiobjective evolutionary fuzzy classifier, random tree, J48, and multilayer perceptron—were implemented and evaluated, and they were compared with traditional logistic regression model estimates. Results: With physical activity and basic demographic status, of all methods analyzed, the random subspace classifier algorithm achieved the highest overall accuracy and area under the receiver operating characteristic (ROC) curve (AUC). The duration of vigorous-intensity activity in one week and the duration of moderate-intensity activity in one week were important attributes. In general, most algorithms showed similar performance. Logistic regression was middle-ranking in terms of overall accuracy, sensitivity, specificity, and AUC among all methods. Conclusions: Physical activity was an important factor in predicting weight status, with gender, age, and race/ethnicity being less but still essential factors associated with weight outcomes. Tailored intervention policies and programs should target the differences rooted in these demographic factors to curb the increase in the prevalence of obesity and reduce disparities among sub-demographic populations.
Background Although Pinterest has become a popular platform for distributing influential information that shapes users’ behaviors, the role of recipes pinned on Pinterest in these behaviors is not well understood. Objective This study aims to explore the patterns of food ingredients and the nutritional content of recipes posted on Pinterest and to examine the factors associated with recipes that engage more users. Methods Data were collected from Pinterest between June 28 and July 12, 2020 (207 recipes and 2818 comments). All samples were collected via 2 new user accounts with no search history. A codebook was developed with a raw agreement rate of 0.97 across all variables. Content analysis and natural language processing sentiment analysis techniques were employed. Results Recipes using seafood or vegetables as the main ingredient had, on average, fewer calories and less sodium, sugar, and cholesterol than meat- or poultry-based recipes. For recipes using meat as the main ingredient, more than half of the energy was obtained from fat (277/490, 56.6%). Although the most followed pinners tended to post recipes containing more poultry or seafood and less meat, recipes with higher fat content or providing more calories per serving were more popular, having more shared photos or videos and comments. The natural language processing–based sentiment analysis suggested that Pinterest users weighted taste more heavily than complexity (225/2818, 8.0%) and health (84/2828, 2.9%). Conclusions Although popular pinners tended to post recipes with more seafood or poultry or vegetables and less meat, recipes with higher fat and sugar content were more user-engaging, with more photo or video shares and comments. Data on Pinterest behaviors can inform the development and implementation of nutrition health interventions to promote healthy recipe sharing on social media platforms.
Key Points Question How did expenditures for statins change after market exclusivity ended and generic statins became available? Findings Using 17 years of the Medical Expenditure Panel Study data, this survey study of generic competition among statins found that the end of market exclusivity was associated with $925.60 of annual savings per individual and $11.9 billion in savings for the US. Meaning Full generic competition of statins was associated with significant cost savings across all major payers within the US health care system.
Background and Objective: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States. COPD is expensive to treat, whereas the quality of care is difficult to evaluate due to the high prevalence of multi-morbidity among COPD patients. In the US, the Hospital Readmissions Reduction Program (HRRP) was initiated by the Centers for Medicare and Medicaid Services to penalize hospitals for excessive 30-day readmission rates for six diseases, including COPD. This study examines the difference in 30-day readmission risk between COPD patients with and without comorbidities. Methods: In this retrospective cohort study, we used Cox regression to estimate the hazard ratio of 30-day readmission rates for COPD patients who had no comorbidity and those who had one, two or three, or four or more comorbidities. We controlled for individual, hospital and geographic factors. Data came from three sources: Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SID), Area Health Resources Files (AHRF) and the American Hospital Association's (AHA's) annual survey database for the year of 2013. Results: COPD patients with comorbidities were less likely to be readmitted within 30 days relative to patients without comorbidities (aHR from 0.84 to 0.87, p < 0.05). In a stratified analysis, female patients with one comorbidity had a lower risk of 30-day readmission compared to female patients without comorbidity (aHR = 0.80, p < 0.05). Patients with public insurance who had comorbidities were less likely to be readmitted within 30 days in comparison with those who had no comorbidity (aHR from 0.79 to 0.84, p < 0.05). Conclusion: COPD patients with comorbidities had a lower risk of 30-day readmission compared with patients without comorbidity. Future research could use a different study design to identify the effectiveness of the HRRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.