To explore the electronic and catalytic properties of nanoclusters, here we report an aromatic-thiolate-protected gold nanocluster, [Au25(SNap)18](-) [TOA](+), where SNap = 1-naphthalenethiolate and TOA = tetraoctylammonium. It exhibits distinct differences in electronic and catalytic properties in comparison with the previously reported [Au25(SCH2CH2Ph)18](-), albeit their skeletons (i.e., Au25S18 framework) are similar. A red shift by ∼10 nm in the HOMO-LUMO electronic absorption peak wavelength is observed for the aromatic-thiolate-protected nanocluster, which is attributed to its dilated Au13 kernel. The unsupported [Au25(SNap)18](-) nanoclusters show high thermal and antioxidation stabilities (e.g., at 80 °C in the present of O2, excess H2O2, or TBHP) due to the effects of aromatic ligands on stabilization of the nanocluster's frontier orbitals (HOMO and LUMO). Furthermore, the catalytic activity of the supported Au25(SR)18/CeO2 (R = Nap, Ph, CH2CH2Ph, and n-C6H13) is examined in the Ullmann heterocoupling reaction between 4-methyl-iodobenzene and 4-nitro-iodobenzene. Results show that the activity and selectivity of the catalysts are largely influenced by the chemical nature of the protecting thiolate ligands. This study highlights that the aromatic ligands not only lead to a higher conversion in catalytic reaction but also markedly increase the yield of the heterocoupling product (4-methyl-4'-nitro-1,1'-biphenyl). Through a combined approach of experiment and theory, this study sheds light on the structure-activity relationships of the Au25 nanoclusters and also offers guidelines for tailoring nanocluster properties by ligand engineering for specific applications.
The phase transitions of poly (N-vinyl caprolactam) (PNVCL) hydrogels are currently under investigation as possible materials for biomedical applications thanks to their thermosensitive properties. This study aims to use the photopolymerisation process to simulate the 4D printing process. NVCL-based polymers with different thermal properties and swellability were prepared to explore the possibility of synthetic hydrogels being used for 4D printing. In this contribution, the thermal behaviours of novel photopolymerised NVCL-based hydrogels were analysed. The lower critical solution temperature (LCST) of the physically crosslinked gels was detected using differential scanning calorimetry (DSC), ultraviolet (UV) spectroscopy, and cloud point measurement. The chemical structure of the xerogels was characterised by means of Fourier transform infrared spectroscopy (FTIR). Pulsatile swelling studies indicated that the hydrogels had thermo-reversible properties. As a result, the effect of varying the macromolecular monomer concentration was apparent. The phase transition temperature is increased when different concentrations of hydrophilic monomers are incorporated. The transition temperature of the hydrogels may allow for excellent flexibility in tailoring transition for specific applications, while the swelling and deswelling behaviour of the gels is strongly temperature- and monomer feed ratio-dependent.
The term 4D printing refers to the idea that the shape or properties of a printed object can be changed when an external stimulus is applied. In this contribution, a temperature-responsive polymer Poly (N-vinyl caprolactam) (PNVCL), which is normally prepared via radical free polymerization, was used to justify the 4D printing concept. As a result, by using a Stereolithography (SLA) 3D printer, 4D prints were successfully prepared. These prints were able to demonstrate intelligent and reversible expansion/shrinkage behaviour as the temperature increases and decreases. Additionally, in order to examine the differences in chemical structure, thermal properties, mechanical properties, and swelling behaviours of the photopolymerised and printed parts, a series of characterisation tests, including Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), goniometry, tensile test, gel fraction measurement and pulsatile swelling study were performed on this study. In conclusion, the differences between polymerisation methods are significant; despite their chemical structures and thermal properties being similar, there were significant differences with regard to tensile properties, swellability and wettability of samples. The implications of conducting this study are remarkable, not only in providing a new way of preparing NVCL, but also in demonstrating the possibility of using 4D printed NVCL for practical applications.
Stimuli-responsive hydrogels have recently gained interest within shapeshifting applications due to their capabilities to expand in water and their altering swelling properties when triggered by stimuli, such as pH and heat. While conventional hydrogels lose their mechanical strength during swelling, most shapeshifting applications require materials to have mechanical strength within a satisfactory range to perform specified tasks. Thus, stronger hydrogels are needed for shapeshifting applications. Poly (N-isopropylacrylamide) (PNIPAm) and poly (N-vinyl caprolactam) (PNVCL) are the most popular thermosensitive hydrogels studied. Their close-to-physiological lower critical solution temperature (LCST) makes them superior candidates in biomedicine. In this study, copolymers made of NVCL and NIPAm and chemically crosslinked using poly (ethylene glycol) dimethacrylate (PEGDMA) were fabricated. Successful polymerisation was proven via Fourier transform infrared spectroscopy (FTIR). The effects of incorporating comonomer and crosslinker on the LCST were found minimal using cloud-point measurements, ultraviolet (UV) spectroscopy, and differential scanning calorimetry (DSC). Formulations that completed three cycles of thermo-reversing pulsatile swelling are demonstrated. Lastly, rheological analysis validated the mechanical strength of PNVCL, which was improved due to the incorporation of NIPAm and PEGDMA. This study showcases potential smart thermosensitive NVCL-based copolymers that can be applied in the biomedical shapeshifting area.
Significant advances have been made in recent years in the materials development of liquid-based 4D printing. Nevertheless, employing additive materials such as nanoparticles for enhancing printability and shape memory characteristics is still challenging. Herein, we provide an overview of recent developments in liquid-based 4D printing and highlights of novel 4D-printable polymeric resins and their nanocomposite components. Recent advances in additive manufacturing technologies that utilise liquid resins, such as stereolithography, digital light processing, material jetting and direct ink writing, are considered in this review. The effects of nanoparticle inclusion within liquid-based resins on the shape memory and mechanical characteristics of 3D-printed nanocomposite components are comprehensively discussed. Employing various filler-modified mixture resins, such as nanosilica, nanoclay and nanographene, as well as fibrous materials to support various properties of 3D printing components is considered. Overall, this review paper provides an outline of liquid-based 4D-printed nanocomposites in terms of cutting-edge research, including shape memory and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.