The effects of ginger on gastrointestinal disorders such as ulcerative colitis have been widely investigated using experimental models; however, the mechanisms underlying its therapeutic actions are still unknown. In this study, we investigated the correlation between the therapeutic effects of ginger and the regulation of the gut microbiota. We used dextran sulfate sodium (DSS) to induce colitis and found that ginger alleviated colitis-associated pathological changes and decreased the mRNA expression levels of interleukin-6 and inducible nitric oxide synthase in mice. 16s rRNA sequencing analysis of the feces samples showed that mice with colitis had an intestinal flora imbalance with lower species diversity and richness. At the phylum level, a higher abundance of pathogenic bacteria, Proteobacteria and firmicutes, were observed; at the genus level, most samples in the model group showed an increase in Lachnospiraceae_NK4A136_group. The overall analysis illustrated an increase in the relative abundance of Lactobacillus_murinus, Lachnospiraceae_bacterium_615, and Ruminiclostridium_sp._KB18. These increased pathogenic bacteria in model mice were decreased when treated with ginger. DSS-treated mice showed a lower abundance of Muribaculaceae, and ginger corrected this disorder. The bacterial community structure of the ginger group analyzed with Alpha and Beta indices was similar to that of the control group. The results also illustrated that altered intestinal microbiomes affected physiological functions and adjusted key metabolic pathways in mice. In conclusion, this research presented that ginger reduced DSS-induced colitis severity and positively regulated the intestinal microbiome. Based on the series of data in this study, we hypothesize that ginger can improve diseases by restoring the diversity and functions of the gut microbiota.
True sea snakes (Hydrophiini) are among the last and most successful clades of vertebrates that show secondary marine adaptation, exhibiting diverse phenotypic traits and lethal venom systems. To better understand their evolution, we generated the first chromosome-level genomes of two representative Hydrophiini snakes, Hydrophis cyanocinctus and H. curtus. Through comparative genomics we identified a great expansion of the underwater olfaction-related V2R gene family, consisting of more than 1000 copies in both snakes. A series of chromosome rearrangements and genomic structural variations were recognized, including large inversions longer than 30 megabase (Mb) on sex chromosomes which potentially affect key functional genes associated with differentiated phenotypes between the two species. By integrating multi-omics we found a significant loss of the major weapon for elapid predation, three-finger toxin genes, which displayed a dosage effect in H. curtus. These genetic changes may imply mechanisms that drove the divergent evolution of adaptive traits including prey preferences between the two closely related snakes. Our reference-quality sea snake genomes also enrich the repositories for addressing important issues on the evolution of marine tetrapods, and provide a resource for discovering marine-derived biological products.
The emergence of antibiotic-resistant bacteria has become a major challenge in current clinical treatment. As essential natural molecules involved in innate immunity, antimicrobial peptides (AMPs) have the potential to break the limits of antibiotic resistance. While AMPs are widely presented in various organisms on this planet, the marine environment is unique in generating a large number of AMPs that exhibit characteristic structures and functions. This review summarizes the structures and mechanisms of action of AMPs derived from invertebrates, fish, amphibians, reptiles, and mammals in the ocean. The comparison of AMPs from organisms in different habitats demonstrates the preference of Arg (arginine) and Leu (leucine) in marine AMPs, which might be associated with the adaptation to the unique features of bacterial membranes in marine environments. In addition, the potential and applications of marine AMPs for the development of novel antibiotics are also described. These summaries are expected to provide a reference for the development and utilization of marine resources in drug development or aquiculture.
Predator-prey arms races are ideal models for studying the natural selection and adaptive evolution that drive the formation of biological diversity. For venomous snakes, venom is a key bridge linking snakes with their prey, but whether and how venom evolves under the selection of diet remains unclear. Here, we focused on two closely related sea snakes, Hydrophis cyanocinctus and H. curtus, which show significant differences in prey preferences. Data-independent acquisition (DIA)-based proteomic analysis revealed different degrees of homogeneity in the venom composition of the two snakes, which was consistent with the differential phylogenetic diversity of their prey. By investigating the sequences and structures of three-finger toxins (3FTx), a predominant toxin family in elapid venom, we identified significant differences between the two sea snakes in the binding activity of 3FTx to receptors from different prey populations, which could explain the trophic specialization of H. cyanocinctus. Furthermore, we performed integrated multi-omics profiling of the transcriptomes, miRNAs, lncRNAs, and proteomes of the venom glands; constructed venom-related mRNA-miRNAs-lncRNA networks; and identified a series of ncRNAs involved in the regulation of toxin gene expression in the two species. These findings are highly informative for elucidating the molecular basis and regulatory mechanisms that account for discrepant venom evolution in response to divergent diets in closely related snakes, providing valuable evidence for the study of co-selection and co-evolution in predator-prey ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.