While previous studies focused on managing charging demand for private electric vehicles (EVs), we investigate ways of supporting the upgrade of an entire public urban electric taxi (ET) system. Concerning the coexistence of plugin charging stations (CSs) and battery swap stations (BSSs) in practice, it thus requires further efforts to design a holistic charging management especially for ETs. By jointly considering the combination of plug-in charging and battery swapping, a hybrid charging management framework is proposed in this paper. The proposed scheme is capable of guiding ETs to appropriate stations with time-varying requirements depending on how emergent the demand will be. Through the selection of battery charging/swap, the optimization goal is to reduce the trip delay of ET. Results under a Helsinki city scenario with realistic ETs and charging stations show the effectiveness of our enabling technology, in terms of minimized drivers' trip duration, as well as charging performance gains at the ET and station sides.
Electric Vehicles (EV) are environment-friendly with lower CO2 emissions, and financial affordability (in term of battery based refuel) benefits. Here, when and where to recharge are sensitive factors significantly impacting the environmental and financial gains, these are still challenges to be tackled. In this paper, we propose a sustainable and smart EV charging scheme enables the preemptive charging functions for heterogeneous EVs equipped with various charging capabilities and brands. Our scheme intents to address the problems when EVs are with various ownerships and priority, in related to the services agreed with charging infrastructure operators. Particularly, the anticipated EVs' charging reservations information with heterogeneity (are multiscale) including their EV type, expected arrival time and charging waiting time at the charging stations (CSs), have been considered for design, planning and optimal decision making on the selection (i.e., where to charge) among the candidature CSs. We have conducted extensive simulation studies, by taking the realistic Helsinki city geographical and traffic scenarios as an example. The numerical results have confirmed that our proposed preemptive approach is better than the First-Come-First-Serve (FCFS) based system, associated with its significant improvement on the reservation feature in EV charging.
Electric Vehicle (EV) has been applied as the main transportation tool recently. However, EVs still require a long charging time and thus inevitably cause charging congestion. The traditional plug-in charging mode is limited by fixed location and peak hours. Therefore, a flexible Vehicle-to-Vehicle (V2V) charging mode is considered in this paper. Here, Parking Lots (PLs) widely dispersed in cities are reused as a common place for V2V charging. EVs are divided into EVs as energy consumers and EVs as energy providers to form as V2V-Pairs.In this paper, we propose a V2V charging management scheme, which includes a distance-based V2V-Pair matching algorithm and a PL-Selection scheme. As the occupation status at PLs is difficult to predict, to achieve high PL utilization and evenly PL-Selection, V2V charging reservation is introduced. Meanwhile, since EV drivers usually park at PLs within a limited duration, our proposed V2V charging scheme introduces the parking duration to optimize V2V charging under a temporal constraint. We simulate this V2V charging scheme under the Helsinki city scenario. The results prove our proposed V2V charging scheme achieves great charging efficiency (minimized charging waiting time and maximized fully charging times).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.