Most of today's AI systems focus on using self-attention mechanisms and transformer architectures on large amounts of diverse data to achieve impressive performance gains. In this paper, we propose to augment the transformer architecture with an external attention mechanism to bring external knowledge and context to bear. By integrating external information into the prediction process, we hope to reduce the need for ever-larger models and increase the democratization of AI systems. We find that the proposed external attention mechanism can significantly improve the performance of existing AI systems, allowing practitioners to easily customize foundation AI models to many diverse downstream applications. In particular, we focus on the task of Commonsense Reasoning, demonstrating that the proposed external attention mechanism can augment existing transformer models and significantly improve the model's reasoning capabilities. The proposed system, Knowledgeable External Attention for commonsense Reasoning (KEAR), reaches human parity on the open CommonsenseQA research benchmark with an accuracy of 89.4% in comparison to the human accuracy of 88.9%.
Most of today's AI systems focus on using self-attention mechanisms and transformer architectures on large amounts of diverse data to achieve impressive performance gains. In this paper, we propose to augment the transformer architecture with an external attention mechanism to bring external knowledge and context to bear. By integrating external information into the prediction process, we hope to reduce the need for ever-larger models and increase the democratization of AI systems. We find that the proposed external attention mechanism can significantly improve the performance of existing AI systems, allowing practitioners to easily customize foundation AI models to many diverse downstream applications.In particular, we focus on the task of Commonsense Reasoning, demonstrating that the proposed external attention mechanism can augment existing transformer models and significantly improve the model's reasoning capabilities. The proposed system, Knowledgeable External Attention for commonsense Reasoning (KEAR), reaches human parity on the open CommonsenseQA research benchmark with an accuracy of 89.4% in comparison to the human accuracy of 88.9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.