The large domain discrepancy between faces captured in polarimetric (or conventional) thermal and visible domain makes cross-domain face recognition quite a challenging problem for both human-examiners and computer vision algorithms. Previous approaches utilize a two-step procedure (visible feature estimation and visible image reconstruction) to synthesize the visible image given the corresponding polarimetric thermal image. However, these are regarded as two disjoint steps and hence may hinder the performance of visible face reconstruction. We argue that joint optimization would be a better way to reconstruct more photo-realistic images for both computer vision algorithms and human-examiners to examine. To this end, this paper proposes a Generative Adversarial Network-based Visible Face Synthesis (GAN-VFS) method to synthesize more photo-realistic visible face images from their corresponding polarimetric images. To ensure that the encoded visible-features contain more semantically meaningful information in reconstructing the visible face image, a guidance sub-network is involved into the training procedure. To achieve photo realistic property while preserving discriminative characteristics for the reconstructed outputs, an identity loss combined with the perceptual loss are optimized in the framework. Multiple experiments evaluated on different experimental protocols demonstrate that the proposed method achieves state-of-the-art performance.
The large domain discrepancy between faces captured in polarimetric (or conventional) thermal and visible domain makes cross-domain face verification a highly challenging problem for human examiners as well as computer vision algorithms. Previous approaches utilize either a twostep procedure (visible feature estimation and visible image reconstruction) or an input-level fusion technique, where different Stokes images are concatenated and used as a multichannel input to synthesize the visible image given the corresponding polarimetric signatures. Although these methods have yielded improvements, we argue that input-level fusion alone may not be sufficient to realize the full potential of the available Stokes images. We propose a Generative Adversarial Networks (GAN) based multi-stream featurelevel fusion technique to synthesize high-quality visible images from prolarimetric thermal images. The proposed network consists of a generator sub-network, constructed using an encoder-decoder network based on dense residual
Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We address the cross-modal recognition problem using a partial least squares (PLS) regression-based approach consisting of preprocessing, feature extraction, and PLS model building. The preprocessing and feature extraction stages are designed to reduce the modality gap between the thermal and visible facial signatures, and facilitate the subsequent one-vs-all PLS-based model building. We incorporate multi-modal information into the PLS model building stage to enhance cross-modal recognition. The performance of the proposed recognition algorithm is evaluated on three challenging datasets containing visible and thermal imagery acquired under different experimental scenarios: time-lapse, physical tasks, mental tasks, and subject-to-camera range. These scenarios represent difficult challenges relevant to real-world applications. We demonstrate that the proposed method performs robustly for the examined scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.