Structural DNA nanotechnology and the DNA origami technique, in particular, have provided a range of spatially addressable two- and three-dimensional nanostructures. These structures are, however, typically formed of tightly packed parallel helices. The development of wireframe structures should allow the creation of novel designs with unique functionalities, but engineering complex wireframe architectures with arbitrarily designed connections between selected vertices in three-dimensional space remains a challenge. Here, we report a design strategy for fabricating finite-size wireframe DNA nanostructures with high complexity and programmability. In our approach, the vertices are represented by n × 4 multi-arm junctions (n = 2-10) with controlled angles, and the lines are represented by antiparallel DNA crossover tiles of variable lengths. Scaffold strands are used to integrate the vertices and lines into fully assembled structures displaying intricate architectures. To demonstrate the versatility of the technique, a series of two-dimensional designs including quasi-crystalline patterns and curvilinear arrays or variable curvatures, and three-dimensional designs including a complex snub cube and a reconfigurable Archimedean solid were constructed.
Self-folding of an information-carrying polymer into a defined structure is foundational to biology and offers attractive potential as a synthetic strategy. Although multicomponent self-assembly has produced complex synthetic nanostructures, unimolecular folding has seen limited progress. We describe a framework to design and synthesize a single DNA or RNA strand to self-fold into a complex yet unknotted structure that approximates an arbitrary user-prescribed shape. We experimentally construct diverse multikilobase single-stranded structures, including a ~10,000-nucleotide (nt) DNA structure and a ~6000-nt RNA structure. We demonstrate facile replication of the strand in vitro and in living cells. The work here thus establishes unimolecular folding as a general strategy for constructing complex and replicable nucleic acid nanostructures, and expands the design space and material scalability for bottom-up nanotechnology.
Engineering wireframe architectures and scaffolds of increasing complexity is one of the important challenges in nanotechnology. We present a design strategy to create gridiron-like DNA structures. A series of four-arm junctions are used as vertices within a network of double-helical DNA fragments. Deliberate distortion of the junctions from their most relaxed conformations ensures that a scaffold strand can traverse through individual vertices in multiple directions. DNA gridirons were assembled, ranging from two-dimensional arrays with reconfigurability to multilayer and three-dimensional structures and curved objects.
Artificial multi-enzyme systems with precise and dynamic control over the enzyme pathway activity are of great significance in bionanotechnology and synthetic biology. Herein, we exploit a spatially addressable DNA nanoplatform for the directional regulation of two enzyme pathways (G6pDH-MDH and G6pDH-LDH) through the control of NAD(+) substrate channeling by specifically shifting NAD(+) between the two enzyme pairs. We believe that this concept will be useful for the design of regulatory biological circuits for synthetic biology and biomedicine.
Understanding the thermodynamic properties of complex DNA nanostructures, including rationally designed two- and three-dimensional (2D and 3D, respectively) DNA origami, facilitates more accurate spatiotemporal control and effective functionalization of the structures by other elements. In this work fluorescein and tetramethylrhodamine (TAMRA), a Förster resonance energy transfer (FRET) dye pair, were incorporated into selected staples within various 2D and 3D DNA origami structures. We monitored the temperature-dependent changes in FRET efficiency that occurred as the dye-labeled structures were annealed and melted and subsequently extracted information about the associative and dissociative behavior of the origami. In particular, we examined the effects of local and long-range structural defects (omitted staple strands) on the thermal stability of common DNA origami structures. The results revealed a significant decrease in thermal stability of the structures in the vicinity of the defects, in contrast to the negligible long-range effects that were observed. Furthermore, we probed the global assembly and disassembly processes by comparing the thermal behavior of the FRET pair at several different positions. We demonstrated that the staple strands located in different areas of the structure all exhibit highly cooperative hybridization but have distinguishable melting temperatures depending on their positions. This work underscores the importance of understanding fundamental aspects of the self-assembly of DNA nanostructures and can be used to guide the design of more complicated DNA nanostructures, to optimize annealing protocol and manipulate functionalized DNA nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.