Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.
This study performed a concurrent comparison of two walking speed estimation methods using shank- and foot-mounted inertial measurement units (IMUs). Based on the cyclic gait pattern of the stance leg during walking, data was segmented into a series of individual stride cycles. The angular velocity and linear accelerations of the shank and foot over each of these cycles were then integrated to determine the walking speed. The evaluation was performed on 10 healthy subjects during treadmill walking where known treadmill speeds were compared with the estimated walking speeds under normal and toe-out walking conditions. Results from the shank-mounted IMU sensor yielded more accurate walking speed estimates, with a maximum root mean square estimation error (RMSE) of 0.09 m/s in normal walking and 0.10 m/s in toe-out conditions; while the foot-mounted IMU sensors yielded a maximum RMSE of 0.14 m/s in normal walking and 0.26 m/s in toe-out conditions. Shank-mounted IMU sensors may prove to be of great benefit in accurately estimating walking speeds in patients whose gait is characterized by abnormal foot motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.