Deltamethrin is widely used in pest prevention and control such as red spiders, aphids, and grubs in strawberry. It is important to accurately monitor whether the deltamethrin residue in strawberry exceeds the standard. In this paper, density functional theory (DFT) was used to theoretically analyze the molecular structure of deltamethrin, gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were used to enhance the surface enhanced Raman spectroscopy (SERS) detection signal. As a result, the theoretical Raman peaks of deltamethrin calculated by DFT were basically similar to the measured results, and the enhancing effects based on AuNPs was better than that of AgNPs. Moreover, 554, 736, 776, 964, 1000, 1166, 1206, 1593, 1613, and 1735 cm−1 could be determined as deltamethrin characteristic peaks, among which only three Raman peaks (736, 1000, and 1166 cm−1) could be used as the deltamethrin characteristic peaks in strawberry when the detection limit reached 0.1 mg/L. In addition, the 500–1800 cm−1 SERS of deltamethrin were analyzed by the partial least squares (PLS) and backward interval partial least squares (BIPLS). The prediction accuracy of deltamethrin in strawberry (Rp2 = 0.93, RMSEp = 4.66 mg/L, RPD = 3.59) was the highest when the original spectra were pretreated by multiplicative scatter correction (MSC) and then modeled by BIPLS. In conclusion, the deltamethrin in strawberry could be qualitatively analyzed and quantitatively determined by SERS based on AuNPs enhancement, which provides a new detection scheme for deltamethrin residue determination in strawberry.
Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS) was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm−1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best (Rp2 = 0.94, RMSEP = 3.17 mg/L) after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm−1 was the highest (R2 = 0.91). Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products.
Compared with the chemical analytical technique, the soil nitrogen acquisition method based on near infrared (NIR) sensors shows significant advantages, being rapid, nondestructive, and convenient. Providing an accurate grasp of different soil types, sensitive wavebands could enhance the nitrogen estimation efficiency to a large extent. In this paper, loess, calcium soil, black soil, and red soil were used as experimental samples. The prediction models between soil nitrogen and NIR spectral reflectance were established based on three chemometric methods, that is, partial least squares (PLS), backward interval partial least squares (BIPLS), and back propagation neural network (BPNN). In addition, the sensitive wavebands of four kinds of soils were selected by competitive adaptive reweighted sampling (CARS) and BIPLS. The predictive ability was assessed by the coefficient of determination R2 and the root mean square error (RMSE). As a result, loess (0.93
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.