As an important economic resource, rubber has rapidly grown in Xishuangbanna of Yunnan Province, China, since the 1990s. Tropical rainforests have been replaced by extensive rubber plantations, which has resulted in ecological problems such as the loss of biodiversity and local water shortages. It is vitally important to accurately map the rubber plantations in this region. Although several rubber mapping methods have been proposed, few studies have investigated methods based on optical remote sensing time series data with high spatio-temporal resolution due to the cloudy and foggy weather conditions in this area. This study presented a rubber plantation identification method that used spatio-temporal optical remote sensing data fusion technology to obtain vegetation index data at high spatio-temporal resolution within the optical remote sensing window in Xishuangbanna. The analysis of the proposed method shows that (1) fused optical remote sensing data with high spatio-temporal resolution could map the rubber distribution with high accuracy (overall accuracy of up to 89.51% and kappa of 0.86). (2) Fused indices have high R2 (R2 greater than 0.8, where R is the correlation coefficient) with the indices that were derived from the Landsat observed data, which indicates that fusion results are dependable. However, the fusion accuracy is affected by terrain factors including elevation, slope, and slope aspects. These factors have obvious negative effects on the fusion accuracy of high spatio-temporal resolution optical remote sensing data: the highest fusion accuracy occurred in areas with elevations between 1201 and 1400 m.a.s.l., and the lowest accuracy occurred in areas with elevations less than 600 m.a.s.l. For the 5 fused time series indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized difference moisture index (NDMI), normalized burn ratio (NBR), and tasseled cap angle (TCA)), the fusion accuracy decreased with increasing slope, and increasing slope had the least impact on the EVI, but the greatest negative impact on the NDVI; the slope aspect had a limited influence on the fusion accuracies of the 5 time series indices, but fusion accuracy was lowest on the northwest slope. (3) EVI had the highest accuracy of rubber plantation classification among the 5 time series indices, and the overall classification accuracies of the time series EVI for the four different years (2000, 2005, 2010, and 2015) reached 87.20% (kappa 0.82), 86.91% (kappa 0.81), 88.85% (kappa 0.84), and 89.51% (kappa 0.86), respectively. The results indicate that the method is a promising approach for rubber plantation mapping and the detection of changes in rubber plantations in this tropical area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.