Drosophila neuroblast asymmetric divisions generate two daughters of unequal size and fate. A complex of apically localized molecules mediates basal localization of cell fate determinants and apicobasal orientation of the mitotic spindle, but how daughter cell size is controlled remains unclear. Here we show that mitotic spindle geometry and unequal daughter cell size are controlled by two parallel pathways (Bazooka/DaPKC and Pins/G alpha i) within the apical complex. While the localized activity of either pathway alone is sufficient to mediate the generation of an asymmetric mitotic spindle and unequal size neuroblast daughters, loss of both pathways results in symmetric divisions. In sensory organ precursors, Bazooka/DaPKC and Pins/G alpha i localize to opposite sides of the cortex and function in opposition to generate a symmetric spindle.
Huntington disease (HD) is a hereditary neurodegenerative disorder caused by mutant huntingtin (mHTT). Phosphorylation at serine-421 (pS421) of mHTT has been shown to be neuroprotective in cellular and rodent models. However, the genetic context of these models differs from that of HD patients. Here we employed human pluripotent stem cells (hiPSCs), which express endogenous full-length mHTT. Using genome editing, we generated isogenic hiPSC lines in which the S421 site in mHTT has been mutated into a phospho-mimetic aspartic acid (S421D) or phospho-resistant alanine (S421A). We observed that S421D, rather than S421A, confers neuroprotection in hiPSC-derived neural cells. Although we observed no effect of S421D on mHTT clearance or axonal transport, two aspects previously reported to be impacted by phosphorylation of mHTT at S421, our analysis revealed modulation of several aspects of mitochondrial form and function. These include mitochondrial surface area, volume, and counts, as well as improved mitochondrial membrane potential and oxidative phosphorylation. Our study validates the protective role of pS421 on mHTT and highlights a facet of the relationship between mHTT and mitochondrial changes in the context of human physiology with potential relevance to the pathogenesis of HD.
Asymmetric cell division of Drosophila neural stem cells or neuroblasts is an important process which gives rise to two different daughter cells, one of which is the stem cell itself and the other, a committed or differentiated daughter cell. During neuroblast asymmetric division, atypical Protein Kinase C (aPKC) activity is tightly regulated; aberrant levels of activity could result in tumorigenesis in third instar larval brain. We identified clueless (clu), a genetic interactor of parkin (park), as a novel regulator of aPKC activity. It preferentially binds to the aPKC/Bazooka/Partition Defective 6 complex and stabilizes aPKC levels. In clu mutants, Miranda (Mira) and Numb are mislocalized in small percentages of dividing neuroblasts. Adult mutants are short-lived with severe locomotion defects. Clu promotes tumorigenesis caused by loss of function of lethal(2) giant larvae (lgl) in the larval brain. Removal of clu in lgl mutants rescues Mira and Numb mislocalization and restores the enlarged brain size. Western blot analyses indicate that the rescue is due to the down-regulation of aPKC levels in the lgl clu double mutant. Interestingly, the phenotype of the park mutant, which causes Parkinson's Disease-like symptoms in adult flies, is reminiscent of that of clu in neuroblast asymmetric division. Our study provides the first clue for the potential missing pathological link between temporally separated neurogenesis and neurodegeneration events; the minor defects during early neurogenesis could be a susceptible factor contributing to neurodegenerative diseases at later stages of life.
Inscuteable is the founding member of a protein complex localised to the apical cortex of Drosophila neural progenitors that controls their asymmetric division. Aspects of asymmetric divisions of all identified apicobasally oriented neural progenitors characterised to date, in both the central and peripheral nervous systems, require inscuteable. Here we examine the generality of this requirement. We show that many identified neuroblast lineages, in fact, do not require inscuteable for normal morphological development. To elucidate the requirements for apicobasal asymmetric divisions in a context where inscuteable is not essential, we focused on the MP2 > dMP2 + vMP2 division. We show that for MP2 divisions, asymmetric localisation and segregation of Numb and the specification of distinct dMP2 and vMP2 identities require bazooka but not inscuteable. We conclude that inscuteable is not required for all apicobasally oriented asymmetric divisions and that, in some cellular contexts, bazooka can mediate apicobasal asymmetric divisions without inscuteable.
Afadin 6 (AF-6) is an F-actin binding multidomain-containing scaffolding protein that is known for its function in cell-cell adhesion. Interestingly, besides this well documented role, we recently found that AF-6 is a Parkin-interacting protein that augments Parkin/PINK1-mediated mitophagy. Notably, mutations in Parkin and PINK1 are causative of recessively inherited forms of Parkinson’s disease (PD) and aberrant mitochondrial homeostasis is thought to underlie PD pathogenesis. Given the novel role of AF-6 in mitochondrial quality control (QC), we hypothesized that AF-6 overexpression may be beneficial to PD. Using the Drosophila melanogaster as a model system, we demonstrate in this study that transgenic overexpression of human AF-6 in parkin and also pink1 null flies rescues their mitochondrial pathology and associated locomotion deficit, which results in their improved survival over time. Similarly, AF-6 overexpression also ameliorates the pathological phenotypes in flies expressing the Leucine Rich Repeat Kinase 2 (LRRK2) G2019S mutant, a mutation that is associated with dominantly-inherited PD cases in humans. Conversely, when endogenous AF-6 expression is silenced, it aggravates the disease phenotypes of LRRK2 mutant flies. Aside from these genetic models, we also found that AF-6 overexpression is protective against the loss of dopaminergic neurons in flies treated with rotenone, a mitochondrial complex I inhibitor commonly used to generate animal models of PD. Taken together, our results demonstrate that AF-6 protects against dopaminergic dysfunction and mitochondrial abnormalities in multiple Drosophila models of PD, and suggest the therapeutic value of AF-6-related pathways in mitigating PD pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.