A novel autofocusing algorithm using the directional wavelet power spectrum is proposed for time delayed and integration charge coupled device (TDI CCD) space cameras, which overcomes the difficulty of focus measure for the real-time change of imaging scenes. Using the multiresolution and band-pass characteristics of wavelet transform to improve the power spectrum based on fast Fourier transform (FFT), the wavelet power spectrum is less sensitive to the variance of scenes. Moreover, the new focus measure can effectively eliminate the impact of image motion mismatching by the directional selection. We test the proposed method's performance on synthetic images as well as a real ground experiment for one TDI CCD prototype camera, and compare it with the focus measure based on the existing FFT spectrum. The simulation results show that the new focus measure can effectively express the defocused states for the real remote sensing images. The error ratio is only 0.112, while the prevalent algorithm based on the FFT spectrum is as high as 0.4. Compared with the FFT-based method, the proposed algorithm performs at a high reliability in the real imaging experiments, where it reduces the instability from 0.600 to 0.161. Two experimental results demonstrate that the proposed algorithm has the characteristics of good monotonicity, high sensitivity, and accuracy. The new algorithm can satisfy the autofocusing requirements for TDI CCD space cameras.
The purpose of sea image enhancement is to enhance the information of the waves, whose contrast is generally weak. Enhancement effect is often affected by impulse-type noise and non-uniform illumination. In this paper, we propose a variational model for sea image enhancement using a solar halo model and a Retinex model. This paper mainly makes the following three contributions: 1. Establishing a Retinex model with noise suppression ability in sea images; 2. Establishing a solar-scattering halo model through sea image bitplane analysis; 3. Proposing a variational enhancement model combining the Retinex and halo models. The experimental results show that our method has a significant enhancement effect on sea surface images in different illumination environments compared with typical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.