Background This systematic review aims to ascertain how accurately 3D models can be predicted from two‐dimensional (2D) imaging utilising statistical shape modelling. Methods A systematic search of published literature was conducted in September 2022. All papers which assessed the accuracy of 3D models predicted from 2D imaging utilising statistical shape models and which validated the models against the ground truth were eligible. Results 2127 papers were screened and a total of 34 studies were included for final data extraction. The best overall achievable accuracy was 0.45 mm (root mean square error) and 0.16 mm (average error). Conclusion Statistical shape modelling can predict detailed 3D anatomical models from minimal 2D imaging. Future studies should report the intended application domain of the model, the level of accuracy required, the underlying demographics of subjects, and the method in which accuracy was calculated, with root mean square error recommended if appropriate.
Major trauma is a condition that can result in severe bone damage. Customised orthopaedic reconstruction allows for limb salvage surgery and helps to restore joint alignment. For the best possible outcome three dimensional (3D) medical imaging is necessary, but its availability and access, especially in developing countries, can be challenging. In this study, 3D bone shapes of the femur reconstructed from planar radiographs representing bone defects were evaluated for use in orthopaedic surgery. Statistical shape and appearance models generated from 40 cadaveric X-ray computed tomography (CT) images were used to reconstruct 3D bone shapes. The reconstruction simulated bone defects of between 0% and 50% of the whole bone, and the prediction accuracy using anterior–posterior (AP) and anterior–posterior/medial–lateral (AP/ML) X-rays were compared. As error metrics for the comparison, measures evaluating the distance between contour lines of the projections as well as a measure comparing similarities in image intensities were used. The results were evaluated using the root-mean-square distance for surface error as well as differences in commonly used anatomical measures, including bow, femoral neck, diaphyseal–condylar and version angles between reconstructed surfaces from the shape model and the intact shape reconstructed from the CT image. The reconstructions had average surface errors between 1.59 and 3.59 mm with reconstructions using the contour error metric from the AP/ML directions being the most accurate. Predictions of bow and femoral neck angles were well below the clinical threshold accuracy of 3°, diaphyseal–condylar angles were around the threshold of 3° and only version angle predictions of between 5.3° and 9.3° were above the clinical threshold, but below the range reported in clinical practice using computer navigation (i.e., 17° internal to 15° external rotation). This study shows that the reconstructions from partly available planar images using statistical shape and appearance models had an accuracy which would support their potential use in orthopaedic reconstruction.
Major trauma is a condition that can result in severe bone damage. Customised orthopaedic reconstruction allows for limb salvage surgery and helps to restore joint alignment. For the best possible outcome three dimensional (3D) medical imaging is necessary, but its availability and access, especially in developing countries, can be challenging. In this study, 3D bone shapes of the femur reconstructed from planar radiographs representing bone defects were evaluated for use in orthopaedic surgery. Statistical shape and appearance models generated from 40 cadaveric X-ray computed tomography (CT) images were used to reconstruct 3D bone shapes from digital reconstructed radiographs simulating bone defects between 0% and 50% in anterior posterior (AP) and anterior posterior/medial lateral (AP/ML) directions by comparing the images to projections of the shape model instance. As error metrics for the comparison, measures evaluating the distance between contour lines of the projections as well as a measure comparing similarities in image intensities were used. The results were evaluated using the root mean squared distance for surface error as well as differences in commonly used anatomical measures, including bow, femoral neck, diaphyseal-condylar and version angles between reconstructed surfaces from the shape model and the intact shape reconstructed from the CT image. The reconstructions had average surface errors between 1.59 mm and 3.59 mm with reconstructions using the contour error metric from the AP/ML directions being most accurate. Predictions of bow and femoral neck angles were well below the clinical threshold accuracy of 3°, diaphyseal-condylar angles were around the threshold of 3° and only version angle predictions of between 5.3° and 9.3° were above the clinical threshold, but within the range of accuracies obtained using computer navigation. This study shows that the accuracy of reconstructions combining the use of planar radiographs and statistical shape and appearance models is sufficient for use in orthopaedic reconstruction surgeries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.