Previous animal studies have linked white matter damage to certain schizophrenia-like behaviors in cuprizone (CPZ)-exposed mouse. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and oligodendrocyte loss coexist in the brain of such mice. The aim of this study was to examine effects of the antioxidant N-acetylcysteine (NAC) on CPZ-induced behavioral changes and concurrent oligodendrocyte loss, oxidative stress, and neuroinflammation in these animals. Male C57BL/6 mice were given intraperitoneal saline or NAC at doses of 100, 200, and 400 mg/kg/day for 2 weeks; animals were fed a CPZ-containing diet (0.2%, w/w) during days 5-14. During days 15-17, the mice were examined in open-field, social recognition, and Y-maze tests (1 test per day). Six mice in each group were then used for biochemical and enzyme-linked immunosorbent assay analyses, while the remaining animals were used for immunohistochemical and immunofluorescence staining. The mice exposed to CPZ for 10 days showed significantly lower spontaneous alternation in the Y-maze, lower activity of total superoxide dismutase, and glutathione peroxidase, but higher levels of malondialdehyde in the cerebral cortex and hippocampus, elevated concentrations of interleukin-1β and tumor necrosis factor-α in the brain regions mentioned above and caudate putamen, and a decreased number of mature oligodendrocytes, but increased number of microglia in all the brain regions examined. These changes, however, were not seen or effectively alleviated in NAC-treated mice at all three doses. These results demonstrate that NAC protected mature oligodendrocytes against the toxic effects of CPZ, likely via its antioxidant and anti-inflammatory actions.
Cuprizone (CPZ) is a chemical chelator toxic to mitochondria of cells. While inducing oligodendrocyte (OL) loss and demyelination, CPZ caused no fatal damage to the other brain cells (neurons, astrocytes, and microglia) in previous studies, suggesting differential susceptibility and vulnerability of brain cells to the CPZ intoxication. To demonstrate this interpretation, C57BL/6 mice were fed rodent chow without or with CPZ (0.2%, w/w) for 7 days. One day later, mitochondrial function of brain cells was assessed by proton magnetic resonance spectroscopy ( 1 H-MRS) and biochemical analysis. Another batch of mice were processed to localize the CPZ-induced damage to mitochondrial DNA, label brain cells, and identify apoptotic cells. Compared to controls, CPZ-exposed mice showed significantly lower levels of N-acetyl-L-aspartate, phosphocreatine, and ATP detected by 1 H-MRS, indicating mitochondrial dysfunction in brain cells. Susceptibility analysis showed an order of OLs, microglia, and astrocytes from high to low, in terms of the proportion of 8-OHdG labeled cells in each type of these cells in corpus callosum. Vulnerability analysis showed the highest proportion of caspase-3 positive cells in labeled OLs in cerebral cortex and hippocampus, where neurons showed no caspase-3 labeling, but the highest proportion of 8-OHdG labeling, indicating a lowest vulnerability but highest susceptibility to CPZ-induced mitochondrial dysfunction. Immature OLs, microglia, and astrocytes showed adaptive changes in proliferation and activation in response to CPZ-exposure. These data for the first time demonstrated the CPZ-induced mitochondria dysfunction in brain cells of living mouse and specified the differential susceptibility and vulnerability of brain cells to the CPZ intoxication.
Astrocytes and oligodendrocytes play essential roles in regulating neural signal transduction along neural circuits in CNS. The perfect coordination of neuron/astrocyte and neuron/oligodendrocyte entities was termed as neuron-glia integrity recently. Here we monitored the status of neuron-glia integrity via non-invasive neuroimaging methods and demonstrated the substructures of it using other approaches in an animal model of maternal separation with early weaning (MSEW), which mimics early life neglect and abuse in humans. Compared to controls, MSEW rats showed higher glutamate level, but lower GABA in prefrontal cortex (PFC) detected by chemical exchange saturation transfer and 1H-MRS methods, lower levels of glial glutamate transporter-1 and ATP-α, but increased levels of glutamate decarboxylase-65 and glutamine synthetase in PFC; reduced fractional anisotropy in various brain regions revealed by diffusion tensor imaging, along with increased levels of N-acetyl-aspartate measured by 1H-MRS; and hypomyelination in PFC as evidenced by relevant cellular and molecular changes.
Clozapine is an atypical antipsychotic with therapeutic efficacy in treatment-resistant schizophrenia patients and low incidence of extrapyramidal side effects. However, the use of clozapine has been limited by its adverse effects on metabolism. Artesunate is a semisynthetic derivative of artemisinin and was shown to decrease the plasma cholesterol and triglyceride in rabbits and rats in recent studies. The aim of this study was to examine possible effects of artesunate on the clozapine-induced metabolic alterations in rats given saline, clozapine, artesunate, or clozapine plus artesunate for 6 weeks. The clozapine group showed significantly high plasma levels of triglyceride, hepatic steatosis, and fibrosis along with high levels of C-reactive protein, alanine aminotransferase, and aspartate aminotransferase compared to the saline group. But the treatment had no effect on weight gain and caused no hyperglycemia, hyperinsulinemia, and behavioral changes in the rats. More significantly, these clozapine-induced changes were not seen in rats coadministered with clozapine plus artesunate. These results added evidence supporting psychiatrists to try add-on treatment of artesunate in schizophrenia patients to ameliorate clozapine-induced adverse metabolic effects.
We developed a theory of neuron-glia integrity to underline the fact that neurons and glia cells work together in the central nervous system. Here we substantiated this theory and exemplified the implication of intact neuron-glia integrity for higher brainfunctions. An animal model of maternal separation with early weaning (MSEW) was applied to neonatal rats to mimic early life neglect and abuse in humans. Behavioral performance of rats was evaluated at adulthood, followed by functional assessments of neuron-glia integrity in living rats, and the demonstration of molecular underpinnings of impaired neuron-glia integrity in MSEW rats. MSEW rats showed higher levels of anxiety and explorative activity, higher glutamate level, but lower GABA level in PFC and hippocampus. MSEW procedure down-regulated protein levels of GLT-1 and ATP-α, but up-regulated GAD65 and GS, while had no effects on GLAST and PAG. Moreover, it reduced the fractional anisotropy values in various brain regions, in addition to increasing NAA levels. Concurrently, MSEW led to hypomyelination in PFC as evidenced by relevant cellular and molecular changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.