To solve the problems of poor exploration ability and convergence speed of traditional deep reinforcement learning in the navigation task of the patrol robot under indoor specified routes, an improved deep reinforcement learning algorithm based on Pan/Tilt/Zoom(PTZ) image information was proposed in this paper. The obtained symmetric image information and target position information are taken as the input of the network, the speed of the robot is taken as the output of the next action, and the circular route with boundary is taken as the test. The improved reward and punishment function is designed to improve the convergence speed of the algorithm and optimize the path so that the robot can plan a safer path while avoiding obstacles first. Compared with Deep Q Network(DQN) algorithm, the convergence speed after improvement is shortened by about 40%, and the loss function is more stable.
In this paper, a voltage-boost-type non-voltage drop single-phase full-bridge inverter connected to a switched-capacitor structure is proposed. The output voltage of the inverter is controlled by the pulse width modulation of a DSP to control the lead and break of the active switches. The full-bridge switches work at low frequency; the other switches work at high frequency. The inverter uses two capacitor modules to charge and discharge alternately so as to overcome the problem of voltage drop on the output side of the inverter in the transition stage from series capacitor discharge to parallel charge. By analyzing the charge–discharge characteristics of the RC charge–discharge circuit, the capacitor charge–discharge cycle can be adjusted to alter the output voltage within a certain range. The results from the physical construction verify the Simulation results achieved well, which demonstrates satisfactory performance that supports the verification of the above theory.
Low-index coal and gas outburst (LI-CGO) is difficult to predict, which seriously threatens the efficient mining of coal. To predict the LI-CGO, the Support Vector Machine (SVM) algorithm was used in this study. The Particle Swarm Optimization (PSO) algorithm was used to optimize the parameters of the SVM algorithm. The results show that based on the training sets and test set in this study, the prediction accuracy of SVM is higher than that of Back Propagation Neural Network and Distance Discriminant Analysis. The prediction accuracy of the SVM model trained by the training set T2 with LI-CGO cases is higher than that of the SVM model trained by the training set T1 without LI-CGO cases. The prediction accuracy gets better when the SVM model is trained by the training set T3, made by adding the data of the other two coal mines (EH and SH) to the training set T2, that only contains the data of XP and PJ. Furthermore, the PSO-SVM model achieves a better predictive effect than the SVM model, with an accuracy rate of 90%. The research results can provide a method reference for the prediction of LI-CGO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.