The structure of the ionic liquid choline lysinate ([Ch][Lys]) and its water mixtures, including a dissolved model lignin residue, guaiacol, is revealed at atomic and nanoscale resolution using neutron diffraction.
The liquid structures of six choline carboxylate/amino acid ionic liquids (bio-ILs) and their mixtures with water and various n-alkanols have been investigated by small-angle X-ray scattering (SAXS).
Millions of tons of solvents are produced annually and are ubiquitous across many industries ranging from coatings, paintings, textiles, pharmaceuticals, extraction of resources, to chemical synthesis. The global market for...
We have investigated the structure and phase behavior of biocompatible, aqueous deep eutectic solvents by combining choline acetate, hydrogen aspartate, and aspartate amino acid salts with water as the sole molecular hydrogen bond donor. Using contrast-variation neutron diffraction, interpreted via computational modeling, we show how the interplay between anion structure and water content affects the hydrogen bond network structure in the liquid, which, in turn, influences the eutectic composition and temperature. These mixtures expand the current range choline amino acid ionic liquids under investigation for biomass processing applications to include higher melting point salts and also explain how the ionic liquids retain their desirable properties in aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.