In patients with colorectal cancer (CRC) that metastasizes to the liver, there are several key goals for improving outcomes including early detection, effective prognostic indicators of treatment response, and accurate identification of patients at high risk for recurrence. Although new therapeutic regimens developed over the past decade have increased survival, there is substantial room for improvement in selecting targeted treatment regimens for the patients who will derive the most benefit. Recently, there have been exciting developments in identifying high-risk patient cohorts, refinements in the understanding of systemic vs localized drug delivery to metastatic niches, liquid biomarker development, and dramatic advances in tumor immune therapy, all of which promise new and innovative approaches to tackling the problem of detecting and treating the metastatic spread of CRC to the liver. Our multidisciplinary group held a state-of-the-science symposium this past year to review advances in this rapidly evolving field. Herein, we present a discussion around the issues facing treatment of patients with CRC liver metastases, including the relationship of discrete gene signatures with prognosis. We also discuss the latest advances to maximize regional and systemic therapies aimed at decreasing intrahepatic recurrence, review recent insights into the tumor microenvironment, and summarize advances in noninvasive multimodal biomarkers for early detection of primary and recurrent disease. As we continue to advance clinically and technologically in the field of colorectal tumor biology, our goal should be continued refinement of predictive and prognostic studies to decrease recurrence after curative resection and minimize treatment toxicity to patients through a tailored multidisciplinary approach to cancer care.
Stathmin 1 (STMN1), also known as p17, p18, p19, 19K, metablastin, oncoprotein 18, LAP 18 and Op18, is a 19 kDa cytosolic protein. It was the first discovered member of a family of phylogenetically related microtubule-destabilizing phosphoproteins critically involved in the construction and function of the mitotic spindle. A threshold level of STMN1 is required for orderly progression through mitosis in a variety of cell types. STMN1 is overexpressed across a broad range of human malignancies (leukemia, lymphoma, neuroblastoma; ovarian, prostatic, breast and lung cancers and mesothelioma). It is also upregulated in normally proliferating cell lines but is only rarely upregulated in nonproliferating cell lines with the exception of neurons, anterior pituitary cells and glial cells. Its expression is also upregulated in hepatocytes during regeneration and in lymphoid cells when they are signaled to proliferate. In this review, we summarize available data as rationale for the therapeutic manipulation of STMN1 in cancer patients.
MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that may lead to novel strategies for therapeutic interventions.
BackgroundColorectal cancer (CRC) is a leading cause of cancer-related death. The biologic response of CRC to standard of care adjuvant therapies such as chemotherapy and radiation are poorly understood. MicroRNAs (miRs) have been shown to affect CRC progression and metastasis. Therefore, we hypothesized that specific miRs modulate CRC response to chemoradiation.MethodsIn this study, we used miR expression profiling and discovered a set of microRNAs upregulated rapidly in response to either a single 2 Gy dose fraction or a 10 Gy dose of γ-radiation in mouse colorectal carcinoma models. We used gain and loss-of-function studies in 2D and 3Dcell proliferation assays and colony formation assays to understand the role of the top miR candidate from our profiling. We used Student’s T-tests for simple comparisons and two-factor ANOVA for evaluating significance.ResultsThe most upregulated candidate at early time points in our signature, miR-451a inhibited tumor cell proliferation and attenuated surviving fraction in longer-term cultures. Conversely, inhibition of miR-451a increased proliferation, tumorsphere formation, and surviving fraction of tumor cells. Using a bioinformatics approach, we identified four genes, CAB39, EMSY, MEX3C, and EREG, as targets of miR-451a. Transfection of miR-451a decreased both mRNA and protein levels of these targets. Importantly, we found miR-451a expression was high and CAB39, EMSY levels were low in a small subset of rectal cancer patients who had a partial response to chemoradiation when compared to patients that had no response. Finally, analysis of a TCGA colorectal cancer dataset revealed that CAB39 and EMSY are upregulated at the protein level in a significant number of CRC patients. Higher levels of CAB39 and EMSY correlated with poorer overall survival.ConclusionsTaken together, our data indicates miR-451a is induced by radiation and may influence colorectal carcinoma proliferation via CAB39 and EMSY pathways.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4370-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.