Accurate eye segmentation can improve eye-gaze estimation and support interactive computing based on visual attention; however, existing eye segmentation methods suffer from issues such as person-dependent accuracy, lack of robustness, and an inability to be run in real-time. Here, we present the RITnet model, which is a deep neural network that combines U-Net and DenseNet. RITnet is under 1 MB and achieves 95.3% accuracy on the 2019 OpenEDS Semantic Segmentation challenge. Using a GeForce GTX 1080 Ti, RITnet tracks at > 300Hz, enabling real-time gaze tracking applications. Pre-trained models and source code are available 1 . * Equal Contribution. 1 https://bitbucket.org/eye-ush/ritnet/
Purpose Cardiac image segmentation is a critical process for generating personalized models of the heart and for quantifying cardiac performance parameters. Fully automatic segmentation of the left ventricle (LV), the right ventricle (RV), and the myocardium from cardiac cine MR images is challenging due to variability of the normal and abnormal anatomy, as well as the imaging protocols. This study proposes a multi‐task learning (MTL)‐based regularization of a convolutional neural network (CNN) to obtain accurate segmenation of the cardiac structures from cine MR images. Methods We train a CNN network to perform the main task of semantic segmentation, along with the simultaneous, auxiliary task of pixel‐wise distance map regression. The network also predicts uncertainties associated with both tasks, such that their losses are weighted by the inverse of their corresponding uncertainties. As a result, during training, the task featuring a higher uncertainty is weighted less and vice versa. The proposed distance map regularizer is a decoder network added to the bottleneck layer of an existing CNN architecture, facilitating the network to learn robust global features. The regularizer block is removed after training, so that the original number of network parameters does not change. The trained network outputs per‐pixel segmentation when a new patient cine MR image is provided as an input. Results We show that the proposed regularization method improves both binary and multi‐class segmentation performance over the corresponding state‐of‐the‐art CNN architectures. The evaluation was conducted on two publicly available cardiac cine MRI datasets, yielding average Dice coefficients of 0.84 ± 0.03 and 0.91 ± 0.04. We also demonstrate improved generalization performance of the distance map regularized network on cross‐dataset segmentation, showing as much as 42% improvement in myocardium Dice coefficient from 0.56 ± 0.28 to 0.80 ± 0.14. Conclusions We have presented a method for accurate segmentation of cardiac structures from cine MR images. Our experiments verify that the proposed method exceeds the segmentation performance of three existing state‐of‐the‐art methods. Furthermore, several cardiac indices that often serve as diagnostic biomarkers, specifically blood pool volume, myocardial mass, and ejection fraction, computed using our method are better correlated with the indices computed from the reference, ground truth segmentation. Hence, the proposed method has the potential to become a non‐invasive screening and diagnostic tool for the clinical assessment of various cardiac conditions, as well as a reliable aid for generating patient specific models of the cardiac anatomy for therapy planning, simulation, and guidance.
Segmentation of the left ventricle and quantification of various cardiac contractile functions is crucial for the timely diagnosis and treatment of cardiovascular diseases. Traditionally, the two tasks have been tackled independently. Here we propose a convolutional neural network based multi-task learning approach to perform both tasks simultaneously, such that, the network learns better representation of the data with improved generalization performance. Probabilistic formulation of the problem enables learning the task uncertainties during the training, which are used to automatically compute the weights for the tasks. We performed a five fold cross-validation of the myocardium segmentation obtained from the proposed multi-task network on 97 patient 4-dimensional cardiac cine-MRI datasets available through the STA-COM LV segmentation challenge against the provided gold-standard myocardium segmentation, obtaining a Dice overlap of 0.849 ± 0.036 and mean surface distance of 0.274±0.083 mm, while simultaneously estimating the myocardial area with mean absolute difference error of 205 ± 198 mm 2 . arXiv:1809.10221v1 [cs.CV]
Cardiac magnetic resonance imaging (CMRI) provides high resolution images ideal for assessing cardiac function and diagnosis of cardiovascular diseases. To assess cardiac function, estimation of ejection fraction, ventricular volume, mass and stroke volume are crucial, and the segmentation of left ventricle from CMRI is the first critical step. Fully convolutional neural network architectures have proved to be very efficient for medical image segmentation, with U-Net inspired architecture as the current state-of-the-art. Generative adversarial networks (GAN) inspired architectures have recently gained popularity in medical image segmentation with one of them being SegAN, a novel end-to-end adversarial neural network architecture. In this paper, we investigate SegAN with three different types of U-Net inspired architectures for left ventricle segmentation from cardiac MRI data. We performed our experiments on the 2017 ACDC segmentation challenge dataset. Our results show that the performance of U-Net architectures is better when trained in the SegAN framework than when trained stand-alone. The mean Dice scores achieved for three different U-Net architectures trained in the SegAN framework was on the order of 93.62%, 92.49% and 94.57%, showing a significant improvement over their Dice scores following stand-alone training-92.58%), 91.46% and 93.81%, respectively.
Accurate segmentation of the left ventricle (LV) blood-pool and myocardium is required to compute cardiac function assessment parameters or generate personalized cardiac models for pre-operative planning of minimally invasive therapy. Cardiac Cine Magnetic Resonance Imaging (MRI) is the preferred modality for high resolution cardiac imaging thanks to its capability of imaging the heart throughout the cardiac cycle, while providing tissue contrast superior to other imaging modalities without ionizing radiation. However, there exists an inevitable misalignment between the slices in cine MRI due to the 2D + time acquisition, rendering 3D segmentation methods ineffective. A large part of published work on cardiac MR image segmentation focuses on 2D segmentation methods that yield good results in mid-slices, however with less accurate results for the apical and basal slices. Here, we propose an algorithm to correct for the slice misalignment using a Convolutional Neural Network (CNN)-based regression method, and then perform a 3D graph-cut based segmentation of the LV using atlas shape prior. Our algorithm is able to reduce the median slice misalignment error from 3.13 to 2.07 pixels, and obtain the blood-pool segmentation with an accuracy characterized by a 0.904 mean dice overlap and 0.56 mm mean surface distance with respect to the gold-standard blood-pool segmentation for 9 test cine MR datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.