Rapid research progress in science and technology (S&T) and continuously shifting workforce needs exert pressure on each other and on the educational and training systems that link them. Higher education institutions aim to equip new generations of students with skills and expertise relevant to workforce participation for decades to come, but their offerings sometimes misalign with commercial needs and new techniques forged at the frontiers of research. Here, we analyze and visualize the dynamic skill (mis-)alignment between academic push, industry pull, and educational offerings, paying special attention to the rapidly emerging areas of data science and data engineering (DS/DE). The visualizations and computational models presented here can help key decision makers understand the evolving structure of skills so that they can craft educational programs that serve workforce needs. Our study uses millions of publications, course syllabi, and job advertisements published between 2010 and 2016. We show how courses mediate between research and jobs. We also discover responsiveness in the academic, educational, and industrial system in how skill demands from industry are as likely to drive skill attention in research as the converse. Finally, we reveal the increasing importance of uniquely human skills, such as communication, negotiation, and persuasion. These skills are currently underexamined in research and undersupplied through education for the labor market. In an increasingly data-driven economy, the demand for “soft” social skills, like teamwork and communication, increase with greater demand for “hard” technical skills and tools.
Globalization places people in a multilingual environment. There is a growing number of users to access and share information in several languages for public or private purpose. In order to deliver relevant information in different languages, efficient multilingual documents management is worthy of study. Generally, classification and clustering are two typical methods for documents management. However, lack of training data and high efforts for corpus annotation will increase the cost for classifying multilingual documents which needs to bridge language gaps as well. Clustering is more suitable to implement in such practical applications. There are two main factors involved in documents clustering, document representation method and clustering algorithm. In this paper, we focus on document representation method and demonstrate that the choice of representation methods has impacts on quality of clustering results. In our experiment, we use parallel corpora (English-Chinese documents on topic of technology information) and comparable corpora (English and Chinese documents on topics of mobile technology and wind energy) as dataset. We compare four different types of document representation methods: Vector Space Model, Latent Semantic Indexing, Latent Dirichlet Allocation and Doc2Vec. Experimental results show that, accuracy of Vector Space Model were not competitive with other methods in all clustering tasks. Latent Semantic Indexing is overly sensitive to corpora itself, for it behaved differently when clustering two different topics of
Purpose Food plays an important role in every culture around the world. Recently, cuisine preference analysis has become a popular research topic. However, most of these studies are conducted through questionnaires and interviews, which are highly limited by the time, cost and scope of data collection, especially when facing large-scale survey studies. Some researchers have, therefore, attempted to mine cuisine preferences based on online recipes, while this approach cannot reveal food preference from people’s perspective. Today, people are sharing what they eat on social media platforms by posting reviews about the meal, reciting the names of appetizers or entrees, and photographing as well. Such large amount of user-generated contents (UGC) has potential to indicate people’s preferences over different cuisines. Accordingly, the purpose of this paper is to explore Chinese cuisine preferences among online users of social media. Design/methodology/approach Based on both UGC and online recipes, the authors first investigated the cuisine preference distribution in different regions. Then, dish preference similarity between regions was calculated and few geographic factors were identified, which might lead to such regional similarity appeared in our study. By applying hierarchical clustering, the authors clustered regions based on dish preference and ingredient usage separately. Findings Experimental results show that, among 20 types of traditional Chinese cuisines, Sichuan cuisine is most favored across all regions in China. Geographical proximity is the more closely related to differences of regional dish preference than climate proximity. Originality/value Different from traditional definitions of regions to which cuisine belong, the authors found new association between region and cuisine based on dish preference from social media and ingredient usage of dishes. Using social media may overcome problems with using traditional questionnaires, such as high costs and long cycle for questionnaire design and answering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.