Noninvasive control over the reversible generation of singlet oxygen ( 1 O 2 ) has found the practical significance in benefiting photodynamic therapy. In this study, we developed a new dual-stage metallacycle (M) by using a photosensitizer and photochromic switch as the functional building blocks, which enables the noninvasive "off− on" switching of 1 O 2 generation through the efficient intramolecular energy transfer. Due to the proximal placement of the functional entities within the well-defined metallacyclic scaffold, 1 O 2 generation in the ring-closed form state of the photochromic switch (C-M) is quenched by photoinduced energy transfer, whereas the generation of 1 O 2 in the ring-open form state (O-M) is activated upon light irradiation. More interestingly, the metallacycle-loaded nanoparticles with relatively high stability and water solubility were prepared, which allow for the delivery of metallacycles to cancer cells via endocytosis. Their theranostic potential has been systematically investigated both in vitro and in vivo. Under the light irradiation, the designed ring-open form nanoparticles (O-NPs) show remarkable higher cytotoxicity against cancer cells compared to the ring-closed form nanoparticles (C-NPs). In vivo experiments also revealed that tumors can be very efficiently eliminated by the designed nanoparticles under light irradiation with the ability to regulate in vivo generation of singlet oxygen. All these results demonstrated that the supramolecular coordination complexes with a dual-stage state provide a highly efficient nanoplatform for noninvasive control over the reversible generation of 1 O 2 , thus allowing for their promising applications in tumor treatment and beyond.
Supramolecular polymeric gels cross-linked by well-defined, discrete metal-organic macrocycles (MOMs) or metal-organic cages have become a prevailing topic within the field of supramolecular self-assembly. However, the realization of supramolecular polymeric hydrogels cross-linked by discrete organometallic architectures with good biocompatibility is still a great challenge. Herein, we present the successful preparation of CO stimuli-responsive, injectable block copolymer hydrogels cross-linked by discrete organoplatinum(II) metallacycles. Through the combination of coordination-driven self-assembly and stepwise post-assembly polymerization, star block copolymers (SBCPs) containing well-defined hexagonal metallacycles as cores were successfully prepared, which featured CO stimuli-responsive properties including CO-triggered morphology transition and CO-induced thermoresponsive behavior. Interestingly, the resultant SBCPs were capable of forming supramolecular hydrogels with MOMs as junctions near physiological temperature, which allowed the realization of a reversible gel-to-sol transformation through the removal and addition of CO. More importantly, the resultant supramolecular hydrogels presented good cytocompatibility in vitro. Therefore, this study provides a new strategy for the construction of new "smart" supramolecular hydrogels with promising applications as biological materials.
A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(ii) metallacycle was successfully prepared, which presented biological application in cell imaging.
As a common phenomenon in biological systems, supramolecular transformations of biomacromolecules lead to specific biological functions as outputs, which thus inspire people to construct biomimetic dynamic systems through supramolecular transformation strategy. It should be noted that well-modulating the artificial macromolecules to fine-tune their properties is of great significance yet still remains a big challenge in polymer chemistry. In this study, through the combination of coordination-driven self-assembly and postassembly ring-opening polymerization, a six-armed star polymer linked by well-defined hexagonal metallacycle as core was successfully prepared. At the same time, the trans-platinum acetylide moieties as transformation sites were anchored onto the discrete metallacycle scaffold. Subsequently, the simple phosphine ligand-exchange reaction induced the conversions of platinum acetylide building blocks with the varied binding angles, which thus resulted in the successive hexagon−rhomboid− hexagon transformations of metallacyclic scaffold, therefore allowing for the corresponding supramolecular transformation of metallacycle-linked star polymers. More importantly, accompanied by such transformation process, property modulation of the resultant polymers has been successfully realized. In a word, by taking advantage of dynamic nature of metal−ligand coordination bonds and simple phosphine ligand-exchange reactions, facile architecture transformation of a star polymer to a linear polymer and back to a star polymer was successfully realized, which may provide a promising approach toward the construction of new dynamic polymeric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.