OBJECTIVEResveratrol, a natural polyphenolic compound that is found in grapes and red wine, increases metabolic rate, insulin sensitivity, mitochondrial biogenesis, and physical endurance and reduces fat accumulation in mice. Although it is thought that resveratrol targets Sirt1, this is controversial because resveratrol also activates 5′ AMP-activated protein kinase (AMPK), which also regulates insulin sensitivity and mitochondrial biogenesis. Here, we use mice deficient in AMPKα1 or -α2 to determine whether the metabolic effects of resveratrol are mediated by AMPK.RESEARCH DESIGN AND METHODSMice deficient in the catalytic subunit of AMPK (α1 or α2) and wild-type mice were fed a high-fat diet or high-fat diet supplemented with resveratrol for 13 weeks. Body weight was recorded biweekly and metabolic parameters were measured. We also used mouse embryonic fibroblasts deficient in AMPK to study the role of AMPK in resveratrol-mediated effects in vitro.RESULTSResveratrol increased the metabolic rate and reduced fat mass in wild-type mice but not in AMPKα1−/− mice. In the absence of either AMPKα1 or -α2, resveratrol failed to increase insulin sensitivity, glucose tolerance, mitochondrial biogenesis, and physical endurance. Consistent with this, the expression of genes important for mitochondrial biogenesis was not induced by resveratrol in AMPK-deficient mice. In addition, resveratrol increased the NAD-to-NADH ratio in an AMPK-dependent manner, which may explain how resveratrol may activate Sirt1 indirectly.CONCLUSIONSWe conclude that AMPK, which was thought to be an off-target hit of resveratrol, is the central target for the metabolic effects of resveratrol.
Mitochondrial stress releases mitochondrial DNA (mtDNA) into the cytosol, thereby triggering the type Ι interferon (IFN) response. Mitochondrial outer membrane permeabilization, which is required for mtDNA release, has been extensively studied in apoptotic cells, but little is known about its role in live cells. We found that oxidatively stressed mitochondria release short mtDNA fragments via pores formed by the voltage-dependent anion channel (VDAC) oligomers in the mitochondrial outer membrane. Furthermore, the positively charged residues in the N-terminal domain of VDAC1 interact with mtDNA, promoting VDAC1 oligomerization. The VDAC oligomerization inhibitor VBIT-4 decreases mtDNA release, IFN signaling, neutrophil extracellular traps, and disease severity in a mouse model of systemic lupus erythematosus. Thus, inhibiting VDAC oligomerization is a potential therapeutic approach for diseases associated with mtDNA release.
The promyelocytic leukaemia (PML) gene is translocated in most acute promyelocytic leukaemias and encodes a tumour suppressor protein. PML is involved in multiple apoptotic pathways and is thought to be pivotal in gamma irradiation-induced apoptosis. The DNA damage checkpoint kinase hCds1/Chk2 is necessary for p53-dependent apoptosis after gamma irradiation. In addition, gamma irradiation-induced apoptosis also occurs through p53-independent mechanisms, although the molecular mechanism remains largely unknown. Here, we report that hCds1/Chk2 mediates gamma irradiation-induced apoptosis in a p53-independent manner through an ataxia telangiectasia-mutated (ATM)-hCds1/Chk2-PML pathway. Our results provide the first evidence of a functional relationship between PML and a checkpoint kinase in gamma irradiation-induced apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.