Abstract. Aerosols in the size class <2.5 µm (6 daytime and 9 nighttime samples) were collected at a pasture site in Rondônia, Brazil, during the intensive biomass burning period of 16-26 September 2002 as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia -Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC). Homologous series of dicarboxylic acids (C 2 -C 11 ) and related compounds (ketocarboxylic acids and α-dicarbonyls) were identified using gas chromatography (GC) and GC/mass spectrometry (GC/MS). Among the species detected, oxalic acid was found to be the most abundant, followed by succinic, malonic and glyoxylic acids. Average concentrations of total dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the aerosol samples were 2180, 167 and 56 ng m −3 , respectively. These are 2-8, 3-11 and 2-16 times higher, respectively, than those reported in urban aerosols, such as in 14 Chinese megacities. Higher ratios of dicarboxylic acids and related compounds to biomass burning tracers (levoglucosan and K + ) were found in the daytime than in the nighttime, suggesting the importance of photochemical production. On the other hand, higher ratios of oxalic acid to other dicarboxylic acids and related compounds normalized to biomass burning tracers (levoglucosan and K + ) in the daytime provide evidence for the possible degradation of dicarboxylic acids (≥C 3 ) in this smoke-polluted environment. Assuming that these and related compounds are photo-chemically oxidized to oxalic acid in the daytime, and given their linear relationship, they could account for, on avCorrespondence to: K. Kawamura (kawamura@lowtem.hokudai.ac.jp) erage, 77% of the formation of oxalic acid. The remaining portion of oxalic acid may have been directly emitted from biomass burning as suggested by a good correlation with the biomass burning tracers (K + , CO and EC a ) and organic carbon (OC). However, photochemical production from other precursors could not be excluded.
Abstract. Measurements of organosulfates in ambient aerosols provide insight to the extent of secondary organic aerosol (SOA) formation from mixtures of biogenic gases and anthropogenic pollutants. Organosulfates have, however, proved analytically challenging to quantify, due to lack of authentic standards and the complex sample matrix in which organosulfates are observed. This study presents a sensitive and accurate new analytical method for the quantification of organosulfates based upon ultra-performance liquid chromatography (UPLC) with negative electrospray ionization mass spectrometry (MS) with the aid of synthesized organosulfate standards. The separation is based upon hydrophilic interaction liquid chromatography (HILIC) with an amide stationary phase that provides excellent retention of carboxy-organosulfates and isoprene-derived organosulfates. The method is validated using six model compounds: methyl sulfate, ethyl sulfate, benzyl sulfate, hydroxyacetone sulfate, lactic acid sulfate and glycolic acid sulfate. A straightforward protocol for synthesis of highly pure organosulfate potassium salts for use as quantification standards is presented. This method is used to evaluate the efficiency and precision of two methods of ambient PM2.5 sample extraction. Spike recoveries averaged 98 ± 8% for extraction by ultra-sonication and 98 ± 10% for extraction by rotary shaking. Ultra-sonication was determined to be a better method due to its higher precision compared to rotary shaking. Analysis of ambient PM2.5 samples collected on 10–11 July 2013 in Centreville, AL, USA during the Southeast Atmosphere Study (SAS) confirms the presence of hydroxyacetone sulfate in ambient aerosol for the first time. Lactic acid sulfate was the most abundant compound measured (9.6–19 ng m−3), followed by glycolic acid sulfate (8–14 ng m−3) and hydroxyacetone sulfate (2.7–5.8 ng m−3). Trace amounts of methyl sulfate were detected, while ethyl sulfate and benzyl sulfate were not. Application of this HILIC separation method to ambient aerosol samples further demonstrates its utility in resolving additional biogenic organosulfates.
The detailed molecular composition of laboratory generated limonene ozonolysis secondary organic aerosol (SOA) was studied using ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Approximately 1200 molecular formulas were identified in the SOA over the mass range of 140 to 850 Da. Four characteristic groups of high relative abundance species were observed; they indicate an array of accretion products that retain a large fraction of the limonene skeleton. The identified molecular formulas of each of the groups are related to one another by CH<sub>2</sub>, O and CH<sub>2</sub>O homologous series. The CH<sub>2</sub> and O homologous series of the low molecular weight (MW) SOA (<i>m/z</i> < 300) are explained with a combination of functionalization and fragmentation of radical intermediates and reactive uptake of gas-phase carbonyls. They include isomerization and elimination reactions of Criegee radicals, reactions between alkyl peroxy radicals, and scission of alkoxy radicals resulting from the Criegee radicals. The presence of compounds with 10–15 carbon atoms in the first group (e.g. C<sub>11</sub>H<sub>18</sub>O<sub>6</sub>) provides evidence for SOA formation by the reactive uptake of gas-phase carbonyls during limonene ozonolysis. The high MW compounds (<i>m/z</i> > 300) were found to constitute a significant number fraction of the identified SOA components. The formation of high MW compounds was evaluated by molecular formula trends, fragmentation analysis of select high MW compounds and a comprehensive reaction matrix including the identified low MW SOA, hydroperoxides and Criegee radicals as building blocks. Although the formation of high MW SOA may occur via a variety of radical and non-radical reaction channels, the combined approach indicates a greater importance of the non-condensation reactions over aldol and ester condensation reaction channels. Among these hemi-acetal reactions appear to be most dominant followed by hydroperoxide and Criegee reaction channels
Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3-and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 – 90 pg m−3. Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m−3, 2-31 pg m−3, 109 pg m−3, respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical (•SO3−, m/z 80) and the sulfate radical (•SO4−,m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates may have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.