Multichannel singular spectrum analysis (MSSA) is an effective algorithm for random noise attenuation in seismic data, which decomposes the vector space of the Hankel matrix of the noisy signal into a signal subspace and a noise subspace by truncated singular value decomposition (TSVD). However, this signal subspace actually still contains residual noise. We have derived a new formula of low-rank reduction, which is more powerful in distinguishing between signal and noise compared with the traditional TSVD. By introducing a damping factor into traditional MSSA to dampen the singular values, we have developed a new algorithm for random noise attenuation. We have named our modified MSSA as damped MSSA. The denoising performance is controlled by the damping factor, and our approach reverts to the traditional MSSA approach when the damping factor is sufficiently large. Application of the damped MSSA algorithm on synthetic and field seismic data demonstrates superior performance compared with the conventional MSSA algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.