In higher plants, the generation and release of viable pollen from anthers is vital for double fertilization and the initiation of seed development. Thus, the characterization of genes related to pollen development and anther dehiscence in plants is of great significance. The F-box protein COI1 plays a crucial role in the jasmonate (JA) signaling pathway and interacts with many JAZ family proteins in the presence of jasmonoylisoleucine (JA-Ile) or coronatine (COR). The mutation of AtCOI1 in Arabidopsis leads to defective anther dehiscence and male sterility (MS), although COI has not been shown to affect fertility in Zea mays (maize).Here we identified two genes, ZmCOI2a and ZmCOI2b, that redundantly regulate gametophytic male fertility. Both ZmCOI2a and ZmCOI2b are highly homologous and constitutively expressed in all tissues tested. Subcellular localization revealed that ZmCOI2a and ZmCOI2b were located in the nucleus. The coi2a coi2b double mutant, generated by CRISPR/Cas9, had non-dehiscent anthers, delayed anther development and MS. In addition, coi2a coi2b male gametes could not be transmitted to the next generation because of severe defects in pollen germination. The JA content of coi2a coi2b anthers was unaltered compared with those of the wild type, and the exogenous application of JA could not rescue the fertility defects of coi2a coi2b. Transcriptome analysis showed that the expression of genes involving the JA signaling transduction pathway, including ZmJAZ3, ZmJAZ4, ZmJAZ5 and ZmJAZ15, was affected in coi2a coi2b. However, yeast two-hybrid assays showed that ZmJAZs interacted with ZmCOI1s, but not with ZmCOI2s. In conclusion, ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize.
Crop improvement, as a long-term endeavor, requires continuous innovations in technique from multiple perspectives. Doubled haploid (DH) technology for pure inbred production, which shaves years off of the conventional selfing approach, has been widely used for breeding. However, the final success rate of in vivo maternal DH production is determined by four factors: haploids induction, haploids identification, chromosome doubling, and successful selfing of the fertile haploid plants to produce DH seeds. Traits in each of these steps, if they can be accurately predicted using genomic selection methods, will help adjust the DH production protocol and simplify the logistics and save costs. Here, a hybrid population (N=158) was generated based on an incomplete half diallel design using 27 elite inbred lines. These hybrids were induced to create F1-derived haploid families. The hybrid materials, as well as the 27 inbreds, the inbred-derived haploids (N=200), and the F1-derived haploids (N=5,000) were planted in the field to collect four DH-production traits, three yield-related traits, and three developmental traits. Quantitative genetics analysis suggested that in both diploids and haploid families, most of the developmental traits showed high heritability, while the DH-production and developmental traits exhibited intermediate levels of heritability. By employing different genomic selection models, our results showed that the prediction accuracy ranged from 0.52 to 0.59 for the DH-production traits, 0.50 to 0.68 for the yield-related traits, and 0.44 to 0.87 for the developmental traits. Further analysis using index selection achieved the highest prediction accuracy when considering both DH production efficiency and the agronomic trait performance. Furthermore, the long-term responses through simulation confirmed that index selection would increase the genetic gain for targeted agronomic traits while maintaining the DH production efficiency. Therefore, our study provides an optimization strategy to integrate GS technology for DH-based hybrid breeding.
Southern corn rust (SCR), caused by Puccinia polysora Underw, is a destructive disease that can severely reduce grain yield in maize (Zea mays L.). Owing to P. polysora being multi-racial, it is very important to explore more resistance genes and develop more efficient selection approaches in maize breeding programs. Here, four Doubled Haploid (DH) populations with 384 accessions originated from selected parents and their 903 testcross hybrids were used to perform genome-wide association (GWAS). Three GWAS processes included the additive model in the DH panel, additive and dominant models in the hybrid panel. As a result, five loci were detected on chromosomes 1, 7, 8, 8, and 10, with P-values ranging from 4.83×10-7 to 2.46×10-41. In all association analyses, a highly significant locus on chromosome 10 was detected, which was tight chained with the known SCR resistance gene RPPC and RPPK. Genomic prediction (GP), has been proven to be effective in plant breeding. In our study, several models were performed to explore predictive ability in hybrid populations for SCR resistance, including extended GBLUP with different genetic matrices, maker based prediction models, and mixed models with QTL as fixed factors. For GBLUP models, the prediction accuracies ranged from 0.56-0.60. Compared with traditional prediction only with additive effect, prediction ability was significantly improved by adding additive-by-additive effect (P-value< 0.05). For maker based models, the accuracy of BayesA and BayesB was 0.65, 8% higher than other models (i.e., RRBLUP, BRR, BL, BayesC). Finally, by adding QTL into the mixed linear prediction model, the accuracy can be further improved to 0.67, especially for the G_A model, the prediction performance can be increased by 11.67%. The prediction accuracy of the BayesB model can be further improved significantly by adding QTL information (P-value< 0.05). This study will provide important valuable information for understanding the genetic architecture and the application of GP for SCR in maize breeding.
Summary In vivo haploid induction has been extended from maize to monocotyledonous plants like rice, wheat, millet and dicotyledonous plants such as tomato, rapeseed, tobacco and cabbage. Accurate identification of haploids is a crucial step of doubled haploid technology, where a useful identification marker is very pivotal. R1‐nj is an extensively used visual marker for haploid identification in maize. RFP and eGFP have been shown to be feasible in identifying haploid. However, these methods are either limited to specific species, or require specific equipment. It still lacks an efficient visual marker that is practical across different crop species. In this study, we introduced the RUBY reporter, a betalain biosynthesis system, into maize and tomato haploid inducers as a new marker for haploid identification. Results showed that expression of RUBY could result in deep betalain pigmentation in maize embryos as early as 10 days after pollination, and enabled 100% accuracy of immature haploid embryo identification. Further investigation in tomato revealed that the new marker led to deep red pigmentation in radicles and haploids can be identified easily and accurately. The results demonstrated that the RUBY reporter is a background‐independent and efficient marker for haploid identification and would be promising in doubled haploid breeding across different crop species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.