Autonomous robotic surgery has the potential to provide efficacy, safety, and consistency independent of individual surgeon’s skill and experience. Autonomous anastomosis is a challenging soft-tissue surgery task because it requires intricate imaging, tissue tracking, and surgical planning techniques, as well as a precise execution via highly adaptable control strategies often in unstructured and deformable environments. In the laparoscopic setting, such surgeries are even more challenging because of the need for high maneuverability and repeatability under motion and vision constraints. Here we describe an enhanced autonomous strategy for laparoscopic soft tissue surgery and demonstrate robotic laparoscopic small bowel anastomosis in phantom and in vivo intestinal tissues. This enhanced autonomous strategy allows the operator to select among autonomously generated surgical plans and the robot executes a wide range of tasks independently. We then use our enhanced autonomous strategy to perform in vivo autonomous robotic laparoscopic surgery for intestinal anastomosis on porcine models over a 1-week survival period. We compared the anastomosis quality criteria—including needle placement corrections, suture spacing, suture bite size, completion time, lumen patency, and leak pressure—of the developed autonomous system, manual laparoscopic surgery, and robot-assisted surgery (RAS). Data from a phantom model indicate that our system outperforms expert surgeons’ manual technique and RAS technique in terms of consistency and accuracy. This was also replicated in the in vivo model. These results demonstrate that surgical robots exhibiting high levels of autonomy have the potential to improve consistency, patient outcomes, and access to a standard surgical technique.
The state of polarization (SOP) is the key characteristic of light; its evaluation is typically based on measurements of the Stokes parameters. However, conventional approaches often have bulky and complex optical systems with long acquisition times. In this Letter, an ultracompact polarimeter based on dielectric metasurfaces is proposed. The pixel of the proposed metasuface has four areas; each area acts not only as a polarization separator, but also a flat focusing lens. It can acquire a certain polarization component of the incident light and focus the component on the receiver. Therefore, the Stokes parameters of the incident light can be immediately determined through the data from the receiver, fully describing its SOP. The incident waves with different SOPs are simulated to demonstrate that the reconstructed Stokes parameters are in good agreement with the original ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.