In this paper, piezoelectric sensing elements are used to assist in the study and analysis of ceramic art process optimization and visual quantization characteristics. A series piezoelectric element impedance sensor is designed based on the resonant frequency characteristics of the series piezoelectric element. Combining the resonant frequency characteristics of the series piezoelectric element and the basic principle of the impedance method, a multisensing impedance method based on the series piezoelectric element impedance sensor is proposed. The feasibility of the multisensing impedance method for monitoring the grout compactness was verified experimentally, and the basic principle of the method was further investigated by finite element simulation. The vase-type porcelain vessels were classified according to symmetry elements to find the characteristic points, the abdominal morphology was used as the basis for classification, and the screened samples were extracted from the contours to exclude the influence of other factors on the vessel shape. By the symmetrical elements of each type of ware, the classification principle of the ware type was designed and divided into six types, and each type was further subdivided into various types to establish a typological map of Qing dynasty bottle porcelain. The information entropy redundancy that describes the uniformity of the code appearance probability and the visual redundancy that describes the human eye’s sensitivity to image content or details are all entry points that can be considered for image coding. The experimental results show that the LBP-HOG fusion features can digitally express the information of ancient ceramic ornamentation and dig and verify the evolution of ceramic ornamentation with the times from the digital quantity. The GRNN model has an excellent performance in processing small samples of ancient ceramic data.
A Fabry-Perot micro-interferometer has been designed based on the conventional single-mode fiber end fusion method for measuring strain along the fiber. During the splicing process of single-mode optical fiber, the uniformly coated glycerine on the end face of the fiber is vaporized due to the high temperature of arc discharge to form a spherical air microcavity (Fabry-Perot cavity). The experimental results show that the proposed sensor can determine the strain during 0-1.2 N with a linear response and the corresponding sensitivity of ~3.25 nm/N. The Fabry-Perot micro-interferometer strain probe proposed in this paper is simple to manufacture, compact in structure and easy to integrate. It has the promising potential in exploring the intelligent wearable devices for real-time monitoring of micro-strain changes such as pulse, blood pressure, and respiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.